Check for
Updates

Extendible Hashing for Concurrent Operations
and Distnibuted Data

Carla Schlatter Flhis
Computer Science Department
Umiversity of Rochester

Abstract

The extendible hash file is a dynamic data structure
that 1s an alternatve to B-trees for use as a database
index While there have been many algorithms proposed
to allow concurrent access to B trees sumilar solutions
for extendible hash files have not appeared In this
paper, we present solutions to allow for concurrency that
are based on locking protocols and minor modtfications
1n the data structure

Another question that deserves consideration 1s
whether these indexing structures can be adapted for use
in a distributed database Among the motwvations for
distributing data are increased availability and ease of
growth, however, unless data struclures mn the access
path are designed to support those goals, they may not
be realized We describe some first attempts at adapting
extendible hash files for distributed data

1. Introduction

The extendible hash file [Tagmn 79] 15 a dynamic
data structure that 1s an alternative 1o B trees for use as a
database index While there have been many algorithins
proposed o allow concurrent aceess 10 B trees [Bayer 77,
Ellis 80, 1ehman 8!, Kwong 82, Miller 78], sunilar
solutions for extendible hash files have not yet appeared
In this paper we present solutions to allow for
concurrency that are based on locking protocols and
munor modifications in the data structure In addition to
developing new algorithms, this work aims to provide 4
better understanding of techniques for adapting data
structures to allow concurrent access Thus we
mnvestigate what happens when one tries to apply some
of the techniques used n B tree solutions 1o extendible
hash_files

The preparauon of this paper was supported 1n part by
National Science Foundation Grant No IST 8025761

Permussion to copy without fee all or part of this matenal 1s granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copynight notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by

pernussion of the Association for Computing Machinery To copy
otherwise, or to repubhish, requires a fee and/or specific permission

© 1982 ACM 0-89791-097-4/83/003/0106 $00 75

The sequental algorithms for extendible hashing
are described 1n [Lagin 79] The basic 1deas and
terminology are summarized below [he data structure
consists of two parls da set of buckets and the directory
lhe buckets reside on secondary storage and contain
keys and associated informauon Ihe order of the data
within buckets 15 not important for this discussion the
directory 1s an array of pointers 10 buckets A hash
function 15 used that generates a very long pseudokey
when applied to a key lhe number of bis of the
pseudokey actually used to index into the directory 1s
called the depth of the directory and changes as the file
grows or shrinks In our work the least significant bits
are used n order to sumplify manipulations of the
directory Suppose that the directory’s depth 1s currently
three lhis means that at the moment, there are etght
valid directory entries lhe fentry 0 <1< 7 pomts
to the bucket that holds all the records whose
pseudokeys end in the three bit binary representation of
1 Fach bucket includes a localdepth (< depth) indicating
that the pseudokeys of the records 1t contains agree in
only that number of bits Thus multiple directory
entries will point to the same bucket 1f 15 localdepth 1s
less than the directory’s depth figure 1 gives an
example of an extendible hash file for sequenual access
[o perform a find operation for a key, A, one would
apply the hash function to A 10 obtain the pseudokey
(1magine 1t 1s° 101°), determine the current depth of the
directory (2 1n this example) and use the appropridle
bits ('01") as an index [ollowing the pomnter m the
directory entry, one would search the third bucket for A
As msertions occur a bucket may become tull (indicated
by the count field) and split into two buckets If the old
localdepth equals depth, the directory doubles in size
and depth tncreases by one Similarly, deletions may
result 1n two buckets merging and possibly reducing the
depth of the directory One way of detecting the
condition that allows halving the size of the directory 18
to keep a count (named depthcount) of the number of
buckets whose localdepth equals depth Ihis data
structure 1S our point of departure for mtroducing
concurrency in Section 2

I'he next step 1s to consider the question of whether
these indexing structures can be adapted for use 1n a
distributed dalabase Among the motvations for
distributing data are increased availability and ease of
growth, however, unless data structures in the access

http://crossmark.crossref.org/dialog/?doi=10.1145%2F588058.588072&domain=pdf&date_stamp=1983-03-21

Directory Buckets

DEPTHCOUNT = 2 LOCALDEPTH = 2

DEPTH = 2 COUNT = X
DATA®
00 >
J
01 —
LOCALDEPTH = 2
COUNT = y
10 »| DATA*

11 :
\ .
\ LOCALDERTH = 1
COUNT = 2

DATA*

Figure 1
Sequential Access Extendible Hash File

path are designed to support those goals, they may not
be realized [n Section 3 we describe some first attempts
at adapung extendible hash files for distributed data
Our thesis 1s that locking patterns and other aspects of
the solutions for concurrency 1n shared data structures
can lead 1o insights 1nto how to partition the data among
processes 1n a distributed environment [his suggests a
methodology for developing distributed solutions

2 Lochking Protocols for kxtendible Hash kiles
21 Common Aspects

In this section, we present two solutions which have
evolved from the sequenudl algorithms for concurrent
manipulation of a centralized extendible hash file
Figure 2 shows the modified structure used in these
solutions The fundamental change 1s that the buckels
are hinked through a next field to allow recovery from
concurrent restructuring operations This provides an
alternate path to the desired data that can be used by a
searching process when the information 1s involved 1n 4
split or merge operation lhus when a bucket splits, the
next hnk of the onginal bucket 1s reassigned to potnt to
the newly created bucket The new bucket gets the
original bucket’s old next pointer Merging does the
reverse Figure 3 shows what happens when the second
bucket in Figure 2 sphits The approdch 1s similar (o the
use of link pointers in Iehman and Yao’s Bk (ree
solution [I ehman 81] In addition, there must be a way
for a process to tell 1f 1t has the wrong bucket We chose
to 1nclude 4 field (commonbuts) containing the common
bit pattern that characterizes the pseudokeys that belong
n the bucket Alternatively, one could reapply the hash
function to any key stored in the bucket and use this for
comparison with the target pseudokey as long as the
possibility of an empty bucket 1s taken care of

107

The goal 15 to allow a number of processes to be in
varnous stages of find, insert, or delete operations at the
same time Each process can mamipulate the data afler
locking appropriate portions of the shared structure and
transterring the information wmto private buffers Ihe
buckets are assumed 1o occupy physical pages on disk
which are read and written as single operations lhe
locking protocol uses various types of locks placed on
the directory (as a whole) and on individual buckels
tla?)? compatibility of lock types 1s given by the following

e

Lock request I xisting lock

p a £
p (read-lock) yes yes no
a (selective lock) yes no no
¢ (exclustve lock) no no no
Directory Buckets
DEPTHCOUNT = 2 LOCALDEPTH = ?
DEPTH = 2 COMMONBITS = 00
= COUNT =
r—*———— DATA*
> NEXT
00 L |
01 — l
LOCALDEPTH = 4
COMMONBITS = 10
10 §| COUNT =
DATA*
NEXT
LOCALDEPTH = 1
COMMONBITS = 1
COUNT =
DATA®*
NEXT
]
Figure 2 \L

Centralized Concurrent Extendible Hash File

2.2 First Solution

The following set of algorithms 1s sumilar to top-
down locking protocols for B-tree variants (cf [Bayer
77), [Ellis 80)), in that a lock 1s placed on each level of
the structure (in this case there are only two levels, the
directory then a bucket) and held unul 1t 1s found to be

Directory Buckets
EOCALDEPTH = 2]
COMMONBITS = 00
COUNT =
DEPTHCOUNT = 2 DATA®
DEPTH = 3 NEXT
000] i
—
LOCALOEPTH = 3 |
001 COMMONBITS = 010
T COUNT =
DATA®*
NEXT
010 -
011 T —
J LOCALDEPTH = 3
COMMONBITS = 110
100 — COUNT =
DATA®
NEXT
101
\
/ 2
110 LOCALDEPTH = 1
COMMONBITS = 1
COUNT =
111 ~ DATA®
_____________________’J NEXT
Figure 3 \l,
After sphitting the "10" Bucket

no longer needed Ihe procedures are given i Iigures
4, 5 and 6 for find, insert, and delete respectively

A process executing the find operation must p lock the
directory before reading the depth and extracting the
apparent bucket pointer lhe plock 1S necessary to
prevent nterference from a deleting process [f the
deleter did not exclude the reader and was 1n the process
of halving the directory, the reader might try lo access
an 1nvalid directory entry based on the old value of
depth A similar interference could ocwcur between
readers and deleters with regard to newly deallocated
buckets Therefore, deleting processes must place
incompatible ¢-locks Readers can safely execute 1n
parallel with 1nserting processes because of the next hnks
and the fact that no portion of the structure 1s lost
during bucket splitting or directory doubling actions
After determining which bucket 15 to be searched, the
reaaer places a p-lock on 1t, releases the lock on the
directory, and transfers the contents 1nto a pnvate
buffer The reader may then discover that it has the
wrong bucket This means that a spht occurred after the
directory was read and before the data was retrieved

Now the localdepth low order bits of the target
pseudokey do not match the commonbits of this bucket

By following the next pointer, the right bucket will
eventually be found 1he next bucket 1s always p locked
prior to releasing the lock on the current bucket This
flow of locks prevents processes from leapfrogging each
other

108

Updating operations are serialized with respect to

each nthaer hy .-, -
WALl VLl Ll]

nsert, an «-lock 1s placed on the directory and held unti}
there 15 no need for further directory manipulation due
1o this msertion Readers can sull proceed because of
lock compatibility Changes made by inserters o the
offictal shared structure appear 1o readers as atomic
actions Splitung a bucket appears as an atomic action
because of the order in which the new bucket pair 1s
written back to disk Doubling the directory appears
atomic because of the choice to use the least significant
bits of the pseudokey Deleting processes use ¢-locks
because of the previously mentioned problems with
readers If the target bucket 1s too empty, the deleter will
ry to merge with the partner bucket The simplest
Interpretation for "too empty” 1s that the only record
contained 1n the bucket 15 the one to be deleted Here
"partner” refers to the partner with respect to the target
bucket’s localdepth Merging 15 then possible If the

Figure 4 Find Algornthm

Shared data for all of the centralized algorithms

struct
nt
nt
int

buffer {
localdepth,
commonbits,
count

1nt next

int data[numentries]},
1nt depth depthcount
int directory[1<<maxdepth],

find(z)
{

int pseudokey,
oldpage /*disk page address*/
newpage, /*disk page address*/

struct buffer B *current
unsigned m,

current = &B

pseudokey = hash (z)

Rholock (directory)
oldpage = 1ndexdirectory (pseudokey &
mask (depth))

Rholock (oldpage),

UnRholock (directory)

getbucket (oldpage current)

m = mask (current -> localdepth)

while ((m & pseudokey) !'= R
current -> commonbits) {/* wrong bucket */
RhoLock (newpage = current -> next)
getbucket (newpage current)
m = mask (current -> localdepth),
UnRholock (oldpage),
oldpage = newpage

}

1f (search (current
found (z),
else
notfound (z),
UnRholock (oldpage)

z))/* 1s z there? */

Figure 5 Insertion Algonthm

insert(z)
ant pseudokey,
oldpage,
newpage
int done,
struct buffer A,
C,
*current
*haifl,
*half2,
current = &A,
halfl = &B,
half2 = &C,

pseudokey = hash (z)

Alphalock (directory),

oldpage = ndexdirectory (pseudokey &

mask (depth))

Alphalock (oldpage)

getbucket (oldpage current),

if (search (current z)) {
/* z 1s already there */
UnAlphalock (directory),
UnAlphatock (oldpage)

else
1f (curreat -> count '= pumentries) {
/* current bucket not full */
UnAlphalock (directory),
add (current z)
putbucket (oldpage, current)
UnAlphatock (oldpage)

1
else { /* current 1s full s/
1f (current -> localdepth == depth)
doubledirectory ()
newpage = allochucket (),
done = split (current halfl, halif2
Z newpage)
putbucket (newpage half2),
putbucket (oldpage haifl),
UnAlphalock (oldpage)
updatedirectory (newpage,
half1l -> localdepth
UnAlphalock (directory),
1f ('done)
insert (z),

pseudokey)

partners have the same localdepth (and 1t 1s not 1) Iwo
buckets are defined as partners with respect 1o bt
position 4 1f their commonbits maich in bits d 1 to 1 and
differ at bit 4 (where the least sigmficant bit 1s
numbered 1) Suppose we want to merge bucket B with
its partner bucket C ¢-locking the partner 1
straightforward 1f C follows B in the hinked ordering of
buckets Otherwise this action actudly 1nvolves
temporarily releasing the lock on B and requesting ¢-
locks on C and B 1n order This avoids deadlock with a
reader following next hinks from C to B Alternatvely,
the reader could have held the p-lock on the directory
untif 1t had the night bucket, but this would be a more
pessimistic approach and would have to be abandoned
in the next solution anyway Detecung the condition
necessary for halving the directory could be done

several ways Here, a depthcount field containing the
number of buckets with localdepth = depth 15
maintatned by structure modifying operations (eg
splitung a bucket of localdepth = depth-1 would add
two, merging two buckets of localdepth = depth would
subtract two, halving the directory would mvolve a scan
of directory contents to determine depthcount for the
new depth by comparing corresponding entries in the
top and bottom halves for pointers which differ, and
doubling the directory would set 1t 10 zero)

2.3 Correctness of the First Solution

Showing the correctness of this solution requires a
proof that 1t 1s deadlock free and that requested
operations perform correctly both with respect to the
target key and the integnty of the data structure
Specifically, a key to be tnserted (deleted) should be
present (absent) when the update terminales It the
desired data for a find operation 1s 1 the file and not
the subject of a concurrent update operation, 1t should
be found

The freedom from deadlock argument depends on
the fact that locks are requested according to an ordering
on the lockable components of the structure lhe
directory 1s always locked first, followed by one of the
buckets While a bucket 15 locked, additional locks are
requested only on buckets reachable from 1t via next
links The only processes that ever attempt to loch more
than one bucket are those executing find or delete
operations Readers follow next links from buckets they
have locked Deleters attempt to lock both partners of a
potential merge For as long as any two buckets remain
in the hashfile, the ordering umposed on them by
reachability through next links remains the same and
between any two partner buckels, there 1s a path from
the "0" partner to the "1" partner Lhus a process trying
to delete from the "1" partner will have to release 1ts
lock on that bucket 1n order to get both partners locked
according to the ordering In addition, 1t 1s 1mpossible
for a process to read a potnter for a bucket that will be
deallocated before 1t can make 1ts lock request since a
deleter excludes other processes from parls of the data
structure that contan pownters 10 the buckets being
removed This point 1s 1important to ensure that lock
requests can eventually be sausfied

It 1s almost trivial to show the correctness of update
operations in this solution since they are essenuially
sequential Removing or adding a key to the hash file
depends first of all on the updating process getting to
the right bucket Since a lock 15 held on the directory
while an updater tmtally reads the bucket pointer and
kept untl the directory reflects all changes in the
structure resultung from 1its update, the information seen
by updaters when they read the directory 1s the same as
1t would be 1f updates were completely serial Arnving at
the night bucket, the updater must also see the right
version of 1t Again a lock which excludes other updaters
1s required in order to read the bucket contents into
private storage and 1s held untl the bucket 1s rewritten
(or 1t 1s discovered that no change 1s needed) lhus
previous updaters have made their modifications known
by the time a new updater gains its lock Since updates

do not interfere with each other, the data structure
should be correct when no update operations are in
progress

readers and updaters The locking protocol ensures that
a reader and a deleter are serialized according to the
order i which they lock the directory A deleter
exclusively locks the directory, the target bucket, and 1ts
partner (when necessary) while modifications are taking
place No intermediate stages of the deletion operaton
will be vistble to other precesses A deleter could
potentially interfere with a reader if the effects of the
deletion appeared afler the reader gained some
mformation from the file and before that information
was acted upon (eg the reader gets a bucket pointer
from the directory, the deleter merges that bucket into
its partner, then the reader tries to follow the pointer)
However, this 18 1impossible since the source of the
reader’s information remains p-locked until the next lock
1s granted This 15 also true when the reader is following
next links Whenever a bucket, 4, can be merged 1nto 1ts
pariner, B, then B’s next link wili pont io 4

By contrast, a reader may see tntermediate stages of
an 1nsertion operation but this does not prevent 1t from
ascertaining the presence or absence of any key other
than the one being added The possible changes 1n the
data structure caused by an inserting process are as
follows If the inserter’s target bucket 1s not full, it 1
replaced 1n a single put operation with the original
contents plus the new record A reader will see either the
old or the new bucket and the only difference 1s the key
being added If the inserter's bucket 1s full, 1t will be
replaced by a pair of buckets 1n which the old contents
are distributed between the two according to pseudokey
The new record will be included 1n the appropriate
partner if there 1s room lhe second hdlf of the pair is
written first in a newly allocated disk page and then the
old bucket 1s replaced by the first half of the parr
Immediately after the first put, the new bucket 1s sull
not reachable through pointers in the hash file 1hus
writing the pair 1s equivalent to the single operation of
wriung the first partner A reader which sees a directory
entry before 1t 1s updated to point to the new bucket will

Figure 6 Deletion Algornithm

delete(z)

mnt pseudokey,
selectedbits
oldpage /* disk address */
newpage /* disk address */
merged /* disk address */
garbage /* disk address */
struct buffer B

C
*brother,
*current

unsigned m

current = &B

brother = &C,

pseudokey = hash (z)
X1lock (directory)
selectedbits = pseudokey & mask (depth)
oldpage = 1indexdirectory (selectedbits),
X1Lock (oldpage)
getbucket (oldpage, current)
1f ((current -> count > 1)
(current -> localdepth == 1)) {
/* current not too empty */ -
UnXiLock (directory),
1f (remove (z current)) /* successful */
putbucket (oldpage, current),
UnX1lock (oldpage),

else {
1f (search (current, z)}) { /* z 15 there */
m =leftshift(1, current->localdepth-1)
1f ((pseudokey & m) '=m) {
/* z goes n farst of pair */
newpage = current -> next
X1Lock (newpage),
getbucket (newpage
merged = oldpage,
garbage = newpage

brother)

else { /* z goes 1n second of pair */

newpage =
indexdirectory (selectedbits & ~m)

UnX1lock (oldpage),
Xilock (newpage),
Xilock (oldpage)
getbucket (newpage
merged = newpage,
garbage = oldpage,
brother -> next = current ~> next

brother)

}

1f (current -> localdepth !'=
brother -> localdepth) {
/* not possible to merge these two */
1f (remove (z, current))

putbucket (oldpage current)

else /* mergable */

1§ ((brother-)]ocaldepth--)==depth)
depthcount = depthcount - 2

brother -> commonbits =
brother -> commonbits &

mask (brother -> localdepth)

putbucket (merged brother)
1f (depthcount == 0)
halvedirectory ()

else
updatedirectory (merged
brother -> localdepth + 1

pseudokey)
deallocbucket (garbage)

}
UnXiLock (newpage),

}
UnXiLock (oldpage)
UnXiLock (directory)

get either the old bucket or the first half of the pair If
the reader’s desired data has moved to the second half, it
will detect this and follow the next link Finally, the
inserter may need to double the directory This appears
to readers as a single operation The directory space is
extended and the old contents copied prior to
incrementing depth and 1t 1s the act of incrementing
depth that makes the new directory entries visible

Even assuming fairness in the granting of lock
requests (eg FIFO subject to the compatibihity
relationship), lockout of readers 1s possible 1If their target
buckets are constantly changing due to a steady stream
of updates

2.4 Second Solution

The recogmzed problem with top-down protocols 1s
the need to hold a lock on the bottleneck of the
structure while determining if restructuring will be
required This 1s avoided 1n the next protocol Ihe 1dea
1s for updating processes to act hike readers during their
search for the night bucket T'he procedure for the find
operation 15 the same as before The algonthms for
insert and delete are found in Figures 7 and 8

For the insert operation, a p-lock 1s placed on the
directory that will be converted to an a-lock 1If the
directory actually will be modified Other insert or delete
operations can also be active The next pointer 1s again
used for recovery but now deleted, but not yet
deallocated, buckets also provide a recovery path
Because of the additional concurrency, updaters may
also find themselves with the wrong bucket and must
follow the recovery path "Wrong bucket” now includes
the case where this bucket has been merged mto a
preceeding bucket The bucket 1s marked as "deleted "
Since there are no curcular paths through the next
pownters that are not protected with the deleting
process’s ¢-locks, this protocol can be shown to be
deadlock free

In additon to setung up the merged bucket,
merging now 1nvolves marking the old pariner as
"deleted"” (we use the commonbuts field for this), selng
1ts next field to point to the merged bucket, updating the
next field of the merged bucket, and writing both
buckets back to secondary storage If 1t is necessary to
release the lock on the target bucket so that ¢-locks may
be requested 1n order on the pair 10 be merged, then a
number of condittons must be checked afler gaining the
locks These will be elaborated in the proof Deleted
buckets and discarded halves of the directory are
actually deallocated only afier ensuring that no process
needs them anymore

2 5 Correctness of Second Solution

The freedom from deadlock issue has been
complicated by the presence of deleted buckets and the
delayed o-locking of the directory !he key observation
to be made with regard to the «-locking is that a process
requesting an e-lock on the directory aiready holds a p-
lock on 1t (essentially doing lock converston) and has all
the necessary locks on buckets This lock request will be
refused if there already 1s an incompatible lock on the
directory If this lock 1s an a-lock held by another
updater, that process will make no further lock requests
The lock cannot be a ¢-lock because of the existing p-
lock Therefore, there 1s no posstbility of deadiock due
to e-locking Given the way deleted buckets are handled
1n this solution, 1t 1s not true that the ordering between
two buckets stays the same [hus, bucket B may be
reachable from bucket 4 but if they are partners this
relationship may be reversed as B 1s merged into 4

111

Figure 7 Insertion Algonthm

insert(z)

nt pseudokey,
oldpage,
newpage,
int done
struct buffer A,
B,
c,
*current,
*half1,
*haif2,
unsigned m,
current = 8A,
halfl = &B,
half2 = &C,

pseudokey = hash (z)
Rholock (directory)
oldpage = indexdirectory (pseudokey &
mask (depth)),
Alphalock (oldpage),
getbucket (oldpage current),
m = mask (current -> localdepth)
while ((m & pseudokey) '= current->commonbits){
/% WRONG BUCKET */
AlphaLock (newpage = current -> next),
getbucket (newpage current)
m = mask (current -> localdepth)
UnAlphalock (oldpage)
oldpage = newpage

}
if (search (current, z)) {
/* IS 7 ALREADY THERE? */
UnRhoLock (directory),
UnAlphalock (oldpage),

else
1f (current -> count '= numentries) {
/* CURRENT BUCKET NOT FULL */
UnRholock (directory)
add (current z)
putbucket (oldpage current)
UnAlphalock (oldpage)

}
else {/* CURRENT IS FULL -
DIRECTORY WILL BE AFFECTED */
Alphalock (directory)
1f (current -> localdepth == depth)
doubledirectory (),
newpage = allocbucket (),
done = split (current, halfi, half2,
z newpage)
putbucket (newpage haif2)
putbucket (oldpage halft)
updatedirectory (newpage
halfl -> localdepth

UnAlphalock (oldpage).
UnAlphalock (directory)
UnRholock (directory)
1f (tdone)

nsert (z),

pseudokey)

Figure 8 Deletion Algonthm

delete(z)
{
it pseudokey,
selectedbits,
oldpage,
newpage
garbage

/* A */

merged

struct buffer B

C
*brother
*current

unsigned m,

current = &B

brother = &C,

pseudokey = hash (z),
Rholock (directory)
selectedbits = pseudokey & mask (de
oldpage = ndexdirectory (selectedd
XiLock (oldpage)
getbucket (oldpage current)
m = mask (current -> localdepth)
while ((m & pseudokey) '= current->commonbits)
{/* WRONG BUCKET */
X1Lock (newpage = current -> next)
getbucket (newpage current)
m = mask (current -> localdepth)
UnXiLock (oldpage),
oldpage = newpage

pth),
its),

if ({current -> count > 1) ||
(current -> localdepth == 1)) {
/* CURRENT NOT TOO EMPTY */
UnRholock (directory)
if (remove (z current))
putbucket (oldpage
UnXiLock (oldpage),

current)

else {
/* IF EVERYTHING STAYS THE SAME TRY TO MERGE */
1f ('search (current 2z)) {
/* 1 NOT THERE */
UnXiLock (oldpage)
UnRholock (directory)
return

else {
m = leftshaft(t current->localdepth-1)
1f ((pseudokey & m) 1= m) {
/* 7 IN FIRST OF PAIR */
newpage = current -> next,
XiLock (newpage)

getbucket (newpage brother)
garbage = newpage
merged = oldpage

}

else { /* 7 IN SECOND OF PAIR */

newpage =
indexdirectory (selectedbrts & ~m)
UnXilock (oldpage)
Xilock (newpage)
getbucket (newpage brother)
Wf (brother -> next '= oldpage) {
/% OLDPAGE AND NEWPAGE ARE
NOT MERGABLE PARTNERS */
UnXilock (newpage)
UnRholLock (directory)
delete (z)
return

}
else {
XiLock (oldpage)
getbucket (oldpage, current)
garbage = oldpage
merged = newpage
brother->next = current->next
if ((mask (current->localdepth)
& pseudokey) f=
current->commonbits) {

/* 7 no longer belongs 1n
oldpage - while waiting
to re-lock oldpage 1t
may have filled up and
split moving z */

UnXiLock (oldpage)

UnX1lock (newpage)

UnRholock (directory),

delete (z)

return

}

}
1f (current -> localdepth t=

brother -> localdepth ||

current -> count > 1 []

(current -> count == 1 &&

tsearch (current 2z))) {

/* E1ther 1t 1s not possible
to merge because of localdepths
or something happened while
waiting to re-lock oldpage -
more data 1inserted .nto
oldpage so 1t 1s no longer empty
and maybe then z deleted */

UnX1lock (newpage)

UnRholock (directory)

1f (remove (z current))

putbucket (oldpage
UnX1Lock (oldpage),
return,

current)

3
/* MERGE */
Alphalock (directory)

1f ((brother -> localdepth--) == depth)

depthcount = depthcount -~ 2
brother -> commonbits =

brother -> commonbits &

mask (brother -> localdepth)
current -> commonbits = deleted
current -> next = merged
putbucket (merged brother)
putbucket (garbage current)
updatedirectory (merged

current->localdepth + 1
UnXiLock (oldpage)
UnXilock (newpage)
UnAlphalock (directory)
UnRhoLock (directory)
XiLock (directory),
XiLock (garbage)
1f (depthcount == 0)

halvedirectory ()
deallocbucket (garbage)
UnXiLock (directory)
UnX1Lock (garbage)

pseudokey)

However, 1t 15 not possible for processes following the
old ordering to coexist with processes following the new
ordering because the deleter uses ¢ locks to ensure that
all the processes with old information have cleared out
of the vicinity of the merge I'xtra precautions must be
taken by deleters to check that the locking of partners 1s
consistent with reachability (line labeled A in Iigure 8)

This solution allows more concurrency among
updaters than the first solution because of the delay in
a-locking for updating the directory and in ¢-locking the
directory for garbage collecion Updaters n their
searching phase are like readers, so arguments for
getung to the nght bucket hold for each type of process
With this locking scheme, processes are allowed to read
out of date directory entries including pointers (o
deleted buckets Imagine 4 searching process that
indexes into the directory and finds a pointer 1o bucket
A as that directory entry 1s about to be changed to
reflect a split or merge If 4 has recently been split, A’s
next hnk will lead to the new bucket which contains the
records moved from A4 If 4 has just been merged into
its partner, 1t will be marked as deleted, making 1t the
"wrong bucket" for any searching process and the next
hnk again will provide recovery The important
observation 1s that obsolete directory entries that are still
visible always point to a bucket from which the correct
bucket 1s reachable via next links Doubling the
directory appears atomic 1 1nally, searching processes do
not access the directory while 1t 1s being shrunk
Discarding deleted components 15 done in a separale
phase which 1s truly serialized with respect to other
actions by ¢-locking

Once an updater arrives at the right bucket and
gains the locks it requires, the actual modifications are
essentially serialized as 1n the first solution Thus
updaters work with the most recent version of that
bucket However, for a deleter (0 get 10 the point where
1t has all the locks its needs can be somewhat mvolved 1f
the target bucket 15 the "1" partner of 4 potenual merge
The deleter must release its lock on the target bucket,
place a lock on the "0" partner, and then re-lock the "1"
partner While this 1s taking place, other update
operations may be affecting these buckets In particular,
a concurrent msertion could add new records Lo the
target bucket once the deleter’s lock 1s released so that 1t
1s not longer empty enough to allow merging It 15 even
theoretically possible for a stream of nserters to fill up
the target bucket and cause a spli, thereby moving the
key that i1s to be deleted In addition, danother deleter
mught get the two partners locked and merged before the
deleter we are focusing on does lach of these
condttions 15 checked for and the pitfalls avoided After
gaining the lock on the "0" partner, the deleter checks
whether merging might be possible (the partner's next
hnk potnts to the target bucket), and 1if this check fails 1t
goes back to simply trying to remove 1ts key If the two
buckets are not hinked in this way, it may mean Lhe
localdepths do not match or that the target bucket has
been deleted Attempting to lock the target bucket under
these circumstances would carry with 1t the danger of
deadlock Upon finding the two buckets directly linked
and re-locking the "1" partner, the deleter checks the
emptiness of the bucket, whether the desired key 15 sull
there, and whether localdepths sull match before going

ahead with the merge Unless the key has moved, the
deleter at this point would have the needed locks and no
further interference could occur at the bucket level

Processes executing the find operation may
legitimately see either an old or the new version of the
target bucket No intermediate states are vistble (1e
adding or removing a key 15 a single pul operation,
sphtting 1s equivalent to a single put, and merging 1s
protected with £-locks) Differences between old and new
only 1nvolve records that are moved to a reachable
bucket or that are the subject of a4 concurrent update
operation Note that lockout 15 possible for all processes
while they are trying to get the nght set of buckels
locked

3. Use with Distributed Data

We have presented two approaches to solving the
problem of allowing concurrency within a shared
extendible hash file Now we turn to the problem of
distributing this information Developing a distnibuted
solution ratses a number of issues, although some are
unique to this particular model of computation, the
aspect of achieving a degree of concurrency 1 common
to both distributed and shared data systems lhus a
correct centralized solution may prove to be a good
starting point tn determining how to partition situctured
data We can assess the previous algorithms on the basis
of their potential for distribution

First 1t must be clear what 1s meant by the phrase
"distributing the data structure” and what our model
a distributed system 1s We assume there are a number
of processes each encapsulating some portion of the data
structure (1€ the entire directory or whole buckets) and
acung as a manager for it Certain pieces of the data
structure may be replicated in several processes
Processes do not share storage (including secondary
storage) and they communicate through asynchronous
messages lhe style of message-passing used in our
protocol depends on rehable delivery, butfering, and
possible anonymity of senders (eg port-hased
communication das tn [Rashid 80]) 1hese assumptions
allow the processes to reside on different machines
connected by a network, and since this 1s possible,
interactions between processes are potentally costly
Requests for find, insert, or delete operations may be
forwarded to the appropriate data managers for service

There are a couple of prinuples influencing this
particular design First of all, if distributing the data 1§
actually going to achieve an increased level of
availability, the directory should be highly accessible
This suggests the need to replicate the directory
information and maintain consistency to the extent that
a request can be made to any of the coptes and
eventually 1t will reach the desired data We assume that
each copy of the directory 1s managed as a whole (1e 1t
1s not partitoned) Given the decision to replicate this
component of the data structure, the consistency issue
becomes important If «- or ¢-locking the directory in
the centralized solutions 1s straightforwardly translated
1nto some action involving all copies simultaneously, 1t
will be an expensive operation and require some

strategles tor avoiding deadlock and dealing with
temporanily missing copies T'hus, the analogue to global
a-locking should be avoided as much as possible,
mmplying that the second of the two previous solutions 1s
more compatible with replication Although a4 number of
general purpose mutual consistency algorithms are
available [Gifford 79, Stonebraker 79, Ihomas 79), 1
may be possible to exploit certain properties of this
problem to arrive at a less synchronized method A
second goal 15 t0 minimize message traffic Whenever
possible, the information needed for decision making
should be available locally Additional modifications 1n
the data structure may be desirable For example, 1n the
centralized algorithms 1t was acceptable to locate a
partner bucket using the directory In the distributed
case, this would 1nvolve a bucket manager sending an
Inquiry message to a directory manager Finally, there
are no constraints to be put on the placement of data
One can 1magtne polictes that would try to group certain
buckets within one server This 1s reasonable for a static
data structure However, ease of growth 1s a major goal
both for extendible hash files and for distributing data
The problem of allocating buckets to servers on any
basis other than availability of space is a hard problem
for a dynamic data structure such as this and 1s not
considered here

As 1ndicated above, this distnbuted solution 1s
denived fron the second set of procedures for the
centralized hash file The rephication of the directory 1s
the main justification for choosing this approach The
data structure would now appear as in Figure 9 Two
copies of the directory are shown A prev link has been
added to each bucket that leads to the bucket from
which this bucket originally spht off This 1s used to find
the "0" partner of a possible merge with information
local to this manager process Fach hink represents a pair
consisting of a long-lived 1denufier for a manager port
and a bucket address that 1s meaningful to that manager
A version field introduced nto each bucket and each
directory entry 1s used in updatng directory copies
asynchronously

There are two types of processes, namely directory
managers and bucket managers I ach bucket manager 1s
responsible for a disjoint subset of the buckets Iigure
10 shows the message types that flow between the
various processes The information contained in these
messages 1s outhined in Figure 11

The procedure for the directory manager processes
15 described 1n terms of actions taken in response to
messages received The directory manager 1s designed as
a server which can keep track of several user requests
The locking of the directory 1n the centralized solution s
embodied 1n the manager’s explcit scheduling of
requests for 1ts attenuon Upon receving a request
message, state is saved 1n a context table and the request
1s forwarded to the appropriate bucket manager I'wo
possible responses may come from a bucket manager,
either bucketdone or update Bucketdone will generally
signify that no directory modifications are needed and
the directory manager may now forget about this
request An update message schedules an update on the
local copy according to version number and notifies all
other directory managers by broadcasting a copyupdate

Directory Buckets

LOCALDEPTH = 2
COMMONBITS = 00

DEPTHCOUNT = 2
DEPTH = 2

COUNT =
OATAS PREV
VERSION NEXT
00 — VERSION {
VERSION l
01 N
N LOCALDEPTH = 2
VERSION \ COMMONBITS = 10
10 »| COUNT =
DATA® PREV
VERSION VERSION NEXT
1" \

/

LOCALDEPTH = 1
COMMONBITS = 1
COUNT =

DEPTHCOUNT = 2
DEPTH = 2

PREV

DATA* NEXT

00 VERSION VERSION |

01 VERSION/ \L

VERSION
10 —
[VERsION P Figure 8
" Distributed Extendible Hash File

message For each outstanding unacknowledged remote
directory modification, a counter 1s incremented that
serves one of the purposes of an o lock (1e preventing
garbage collection) A bucket may not be deallocated
until all directortes send an achnowledge message Upon
recerving a copyupdate message, a directory mandger
schedules the update on its local copy and when the
changes have been apphed (and in the case of delete
operations, when the equivalent of ¢-locking oceurs),
acknowledgements are sent

Because obsolete directory nformation 1s usable,
the multple copy update does not have to be stricly
synchronized (in the sense of an atomic transaction)
However, the ordering of different directory
modifications due to operauions on the same bucket
should be the same across all copies and determined by
the order 1n which the bucket operations are performed
Each bucket contains a version number that increases
with each update that causes a directory update The
version number 1n each directory entry should match the
version of the bucket it points to when the directory 15
completely up to date 1he following example ilustrates

Bucket
Mgr

<= RESPONSE

REQUEST =>
MERGE UP 1\

MURLPLY
Directory | <= UPDATE GOAHE A |
Mgr (~ BUCKETDONE
PN Bucket
INSERT = > Mgr
DELETE = > ~7 MEHGLOOWN |,

GARBAGECOLLECT =5
WRONGBUCKET J/

A
| ACK |
v

M D REPLY 1\

COPYUPDATE SPLITBUCKE I JJ
A

A
ack | S UsPLTHLY |
Directory Bucket
Mgr Mgr

Buckets distributed
among Buckel Managers

Directory replicated
within each Directory

Manager

Figure 10 Protocols for the Distributed
Hashing Algorithms

why this ordering approach 1s adopted Suppose first 4
split operation 15 performed almost mmediately
followed by a merge nvolving those two buckets
Imagine a directory manager that hears about these
updates 1n the opposite order and applies them lhe
directory update related to the merge would essentially
have no effect since the sphit had not yet been processed
The subsequent update related 10 the spht would result
in directory entries leading to a4 deleted bucket At this
pomnt the direclory 1s usable since next hinks provide
recovery However, since 1t appedrs that both messages
have been serviced, the deleted buckel could then be
deallocated This would leave that copy of the directory
1n a truly incorrect state from which recovery would be
1mpossible

For simplicity, the bucket manager 1s presented
here as a front end process and a set of assouiated
processes that are assumed to restde at the same site and
share secondary memory These processes taken together
perform the duties of the bucket manager and preserve
the specified interface with other processes 1he
procedures executed by these processes are detailed in
[Elis 82] The front end process serves as the initial
contact for its set of buckets The auxiliary processes

115

operate much like processes in the centralized solution
until they require pieces of the data structure that dre
outside this manager’s domain We have already
discussed the directory update messages Protocols are
also available for off-site searching (wrongbucket
message), merging (mergeup and mergedown messages),
and spliting (splitbuchet message) Taking off-site
actions and the need 1o exchange messages 1nto account,
the procedures are not radically different from those in
the centralized solution

In this report, we just suggest what the proof of
correctness would require Given the correctness of the
centralized algorithm, one approach 1s to show that the
distributed implementation 1s 1n some sense equivalent
By following an execution of a user’s request through
the various processes that become 1nvolved and
comparing this with the steps taken by the one process
handhing that request 1n a centralized system, the
correspondence between execullon sequences can be
seen This needs to be formalized In addition, 1t 1s
necessary to show that the multiple copy update strategy
applied to the replicated directories 15 correct We must
also demonstrate that the multiplexing of servers and the
message flows between them do not tntroduce deadlock
Crash tolerance has not been specifically addressed but
our solution does not appear to present major obstacles
to wncorporating 1t These 1ssues will be elaborated upon
in a future paper

4, Summary

Extendible hash files have been proposed as a data
structure for sequential find, insert, and delete
operattons In this report, we have presented two
solutions that allow concurrent operations on a shightly
modified structure As in proposals for concurrency in
B-tree vanants, making modifications to the data
structure to provide alternate pathways to the desired
data 1s a fundamental technique In a future paper, we
will evaluate the performance of these algorithms and
comparable B-tree solutions

Starting from one of these solutions for concurrency
in a centralized hash file, we developed a distributed
version The important point s that concurrent
algonthms 1nvolving shared storage may ofien provide
nsights into how to partition and/or replicate data Ihis
suggests a methodology 1n which the problems of
correctly introducing concurrency and of distributing the
computation are addressed as distinct issues

Acknowledgments

I would like to thank Jurg Nievergelt for stimulating
this work

data in message

desired key
op {findjinsertjdelete)
user s port

message 1d
Request

transaction #
success {true|false)

Bucketdone

Update transacuon #

old local depth

verston # of 0 partner
version # of 1" partner
new page address

1d of bucket manager
success {truelfalse)

op (wnsert|delete)

pseudo key

old local depth

version # of O partner
version # of 'l partner
new page address

1d of bucket manager
acknowledgement port

Find, Insert, Delete desired key

transaction #

page address

user’s port

directory manager's reply port
pseudo key

Garbage Collect List of page addresses

Figure 11

5. References

[Bayer 77]

[Ells 82]

[Elhs 80]

[Fagin 79]

R Bayer and M Schkolnick
"Concurrency of Operauons on B trees”,
ACTA Informatica, 9, 1977 121

CS Ells

"Extendible Hashing for Concurrent Operations and
Distributed Data,

TR110, Computer Science Department, Umv of
Rochester, October 1982

C Elbs
Concurrent Search and Insertion 1n 23 Trees,”
ACTA Informatica 14, 1980, 63 86

R Fagin, J Nievergelt, N Pippenger, and HR
Strong

' Extendible Hashing
Dynamic Files,”
ACM TODS, Vol 4, No 3, September, 1979, 315
355

A Fast Access Method for

[Gifford 79] D Gufford,

[Kwong 79]

'Weighted Voung for Replcated Data”

Proceedings, 7 Symposium on OS Pnnciples,
December 1979

YS Kwong and D Wood,

“"New Method for Concurrency in B trees",
IEEE Transactions on Software Engmeering, Vol
SL 8 No 3, May 1982

message 1d data 1n messdage

op (findjmscrt|delete)
desired Key

transaction #

pagt address

user s port

drrectory managet s reply port
pseudo key

buckel manager s reply port

Wrongbucket

Ack for Wrongbucket
Splitbucket manager s 1eply poit
buffer contents of new half
Sphitreply new page addiess

1d of buckcl manager
Murgedown partner s address

local depth

bucket manages s 1Lply port

buffer contnts
success (trucjfalse)

M D Reply

““““ pirtner s addriss

buckct manager s 1eply port
targel bucket s address
bucket manager s id

M U Reply local depth

version #

buckel matiaper s 1ply pott
steeess (truclfalse)

next ink

next bucket manager id
yersion #

suceesy {trucjlaloe)

Go ahcad

Messages

{Lehman 81] P Lehman and SB Yao
:I"Efﬁcxent Locking for Concurrent Operations on B
Tecs”,
847%M TODS, Vol 6, No 4, December 1981 650

[Miller 78] R Miuler and L Snyder,
"Muluple Access to B trees”,

Proc Conf Information Sciences & Systems
(prelumunary report) March 1978

[Rastud 80} R Rashid,

"An Interprocess Commumcaton Facility for
UNIX '’

CMU CS 80 124, Camegie Mellon Umversity, June
1980

[Stonebraker 79] M Stonebraker,
"Concurrency Control and Consistency of Muluple
Copies of Data in Distributed INGRLS
IEEE Transactions on Software Engineering, Vol
SE S, No 3, May 1979

R H Thomas,

"A Majonty Consensus Approach to Concurrency
Control for Muluple Copy Databases

ACM TODS, Vol 4, No 2 July 1979, 180 209

[Thomas 79}

