
Extendtble Haslung for Concurrent Operations
and Dlstrlbuted Data

Carla Sclhtter b 111s
Computer hence Department

Umversrty of I~ocliester

Abstract

The extendible hash file IS a dynamlL data structure
that Is an alternallve to H-trees for use as d ddkhdse
Index While there have been many algorlthrns proposed
to allow concurrent dcces to I3 trees sunildr solutions
for extendible hash files have not appeared In this
paper, we PI’eSent solutions to allow for LonLurrenLy thdl
are based on lockmg protocols and minor modlficatlons
ID the data structure

Another question that deserves conslderdtlon IS
whether these mdexmg structures cd11 be addpted for use
In a distributed ddkib&e Among the motlv,ttlons for
dlstrlbutmg data are increded avdlldblhty dnd e&e of
growth, however, unless dald struLtules m the dLLebs
path are designed to support those gOdIS, they mdy not
be reallLed We describe some first attempts at adaptmg
extendible hash files for dlstrlbuted data

1. lntroductlon

The extendible hash file [Tagm 791 1s a dyndmlc
data structure thdt Is an alternatlve to II trees for IIX ds d
database Index While there hdve been many algonthtm
proposed to allow LonLurrent dLc.ess to Ii trees [Ildyer 77,
Ellis 80, I ehmdn 81, Kwong 82, Miller 7X], slmlLu
soluuons for extendible hdsh files have not yet appealed
In this paper we present solutions to dllow for
concurrency thdt dre bdsed on IoLklng protOLOi5 dnd
mmor modlfiLahons m the ddtd structure In addltlou to
developing new dlgonthms, this work duns to pro~ltlt: d
better understdndlng of techmques for addptlng ddtd
structures to allow concurrent dxess I bus we
mvestlgate what hdppens when one IrleS to apply 5ome
of the techmques used m Ii tree solutions to extendible
LM-files_ - _ - - - - - _ - - _ _ _

1 he preparauon of this paper was supported in part by
National Science Foundauon Grant No ISr 8025761

Pernusslon to copy without fee all or part of this material IS granted
provided that the copies are not made or dlstrlbuted for dxect
commercial advantage, the ACM copyright notIce and the title of the
pubhcatlon and its date appear, and notxe IS given that copymg IS by
pernusslon of the Assoclatlon for Computmg Machmery To copy
otherwIse, or to repubhsh, recpures a fee and/or specific permIssIon

@ 1982 ACM 0-89791-097-4/83/003/0106 $0075

1 he sequential algorithms for extendible hdshmg
are described in [I agm 791 1 he basic Itfeds dnd
terminology are summarlfed below Ihe ddld structure
c011s1sts of two parts d set of bu heft and the dmtIorv
Ihe buckets reside on seLonddry slorage dnd ~oritdiri
keys and a%OCldted mformduon I he order of the ddtd
wlthm buckets 1s not Important for thla discussion I he
directory IS an array of pointers to buckets A h,lsh
function is used that generates a \ery long I)\PI&I\EY
when apphed to a key Ihe number of bits of the
pseudokey actually used to index mto the directory IS
called the @VII of the dlreLtory dnd Lhdnges db the file
grows or shrinks In our work the leat slgnlfic.dnt bils
dre used m order to sunphfy mdmpul,ltlons of the
directory Suppose that the dlreltory’s depth IS currently
three I hn means that dt the moment, there dre eight
valid directory entries Ihe ,lh entry 0 5 1 5 7 pomts
to the bucket that holds all the reLords whose
pseudokeys end m the three bit bmdry represenlduon of
I Each bucket includes a localdeph (5 depth) lndlcdllng
that the pseudokeys of the records It contams agree in
only that number of bits I bus multIpIe directory
entries will pomt to the sdme bucket If IL, loL,ildepth 1s
less thdn the dlreltory’s depth I lgure 1 gives dn
exdmple of an extendible h&h file for sequenUd1 dLCess
IO perform a find operdtlon for a key, !,, one would
apply the hdsh function to .L to obtdm the pseudokey
(imagine 11 IS ’ 101’), determme the Lurrent depth of the
directory (2 in this example) dnd use the dppropIi,lte
bits (‘01’) as an index I ollowmg the pomtel HI the
d!reLtory entry, one would sedich the third huLket for /,
As mserllons occur a bucket rndv t>eLome tull (md~rted
by the cour~f field) and spilt mto two buckets If the old
localdepth equals depth, the directory doubles 111 sl/e
and depth increases by one Slmildrly, deletions mdy
result in two buckets mergmg dnd possibly reducmg the
depth of the directory One way of detec.tmg the
condmon that allows hdlvmg the sl/e of the C1IrtLtory IS
to keep a count (ndmed dephcounr) of the number of
buckets whose locdldepth equals depth I hrs data
structure IS our pomt of departure for mtroduLmg
concurrency In Secuon 2

Ihe next step IS to consider the question of whether
these mdexmg structures cdn be ddapled for use In a
distributed d&base Among the mollvduons for
dlstrlbutmg data dre mcredsed dvalk3blhty and e&e of
growth, however, unless datd structures In the access

106

http://crossmark.crossref.org/dialog/?doi=10.1145%2F588058.588072&domain=pdf&date_stamp=1983-03-21

Directory Buckets

DEPTHCOUNT = 2

DEPTH = 2

LCCALDEPTH = 2

COUNT = X ------I DATA’

et-- 1
O’ II---l LDCALDEPTH = 2

Figure 1

COUNT = 2

%VJentlal Access Extendible Hash File

path are deslgned to support those goals, they mdy not
be reahLed In Section 3 we desLribe some first dttempls
at adapting extendible hdsh files for dmtrihuted d&d
Our thesis IS that locking patterns dnd other aspecls of
the solutions for concurrency in bhdred datd strumres
can lead to Insights into how to ptitltlon the datd among
processes in a dlstrlbuted environment rhls suggests a
methodology For developing dlstnbuted solutions

2 Lochmg Protocols for E xtendlble this11 b iles

2 1 Common Aspects

In thus section, we present two solutions which h,lve
evolved from the sequenudl algorithms for LonLurrent
manipulation of a centrahted extendible hdsh file
Figure 2 shows the modified structure used m these
soluuons ‘I he fundamental change IS that the buckets
are linked through a next field to allow recovery from
concurrent restructuring operations ‘I his provides dn
alternate path to the desired datd thdt un be used by a
searching process when the mformdtion is involved in d
split or merge operdtlon lhus when a bucket sphls, the
next link of the orlgmdl bucket 1s reassigned to point to
the newly Credted bucket The new bucket gels the
original bucket’s old next pointer Merging does the
reverse Elgure 3 shows whdt happens when the second
bucket in Figure 2 splits 1 he approdch is similar lo the
use of link pointers in I ehmdn dnd YaO’s 13”‘lk tree
solution [I ehman 811 In addition, there must be a way
for a process to tell if it hds the wrong bucket We chose
to include d field (commonbm) containing the Lommon
bit p&tern thdt chardcterires the pseudokeys that belong
in the bucket Aherndtlvely, one could reapply the hah
function to any key stored in the bucket and use 011s for
comparison with the target pseudokey as long as the
posslblhty of an empty bucket IS taken care of

The goal is to allow a number of processes to be in
various stages of find, insert, or delete operallons at the
same time Each process Ldn mdnlpuldte the ddtd after
locking appropriate portrons of the shared structure and
transferring the information into private buffers I he
buckets dre assumed lo occupy physlcdl pages on disk
which are read and written ds single operations 1 he
locking protoLo1 uses vdrlous types of locks plaled on
the directory (as a whole) dnd on mdividudl buckets
1 he compdllblhty of lock types IS gilen by the follohmg
table

Lock request I xlstlng lock
P a E

p (read-lock) yes yes no

a (selective lock) yes no no

4 (exclusive lock) no no no

Directory Buckets

DEPTHCOUNT = 2

DEPTH E 2

DATA’

00
NEXT

I J

t I I
01 4

LOCALDEPTH = 7

COMMONBITS = 10

10

NEXT

11 I

1
LOCALDEPTH E 1

COMMONBITS = 1

COUNT =

DATA’
NEXT

I ,

Figure 2

Centralized Concurrent Extendible Hash File

2.2 First Solution

The followmg set of algorithms IS sumlar to top-
down lockmg protocols for R-tree variants (cf [Bayer
771, [Elhs SO]), in that a lock is placed on each level of
the structure (in this case there are only two levels, the
directory then a bucket) and held until It is found to be

107

Directory Buckets

010

011

100

101

110

111

I LOCALDEPTH = 2

COMMONBITS = 00

1-w-j IIATA* NEXT (

Figure 3

After sphttmg the “10” Bucket

no longer needed 1 he procedures are given 111 I lgnres
4, 5, and 6 for find, insert, dnd delete respectively
A process executing the find operdtlon must 1, IoLk the
directory before reddlng the depth and exlraLlmg the
apparent bucket pointer 1 he I, IoLk IS necessary to
prevent Interference from a deleting process If the
deleter did not ex&de the reader and was in the proLess
of halvmg the directory, the reader might try to aLLess
an invalid directory entry bdsed on the old vdlue of
depth A similar InterfererILe could occur between
readers and deleters with regdrd to newly dedllocdted
buckets rherefore, deleting processes must place
incompatible t-locks Redders Lan safely execute in
parallel w1t.h mserlmg processes beLause of the next hnks
and the fdct that no portlon of the 5truLture IS lost
during bucket sphttmg or dtreLtory doublmg dctlons
After delermmmg which bucket IS to be searched, the
reaaer places a p-lock on It, releases the lock on the
directory, and transfers the contents Into a pnvale
buffer The reader may thed dlscover thdt 1t hd5 the
wrong bucket This means that a split occurred dfier the
directory was read and before the data was retrieved
Now the localdepth low order bits of the target
pseudokey do not match the commonblts of this bucket
By following the next pointer, the right bucket will
eventually be found 1 he next bucket 15 dlwdys p IoLked
prior to releasing the lock on the current bucket lhls
flow of locks prevents processes from leapfroggmg each
other

Updating operations are serlahled with respect to
each other by a-a, a-4, and 4-c lock mcompaublhtles I’o
insert, an a-lock is placed on the directory and held until
there 1s no need for further d]reLtory manipuldlion due
to thus msertlon Readers can still proceed beLduse of
lock comparlbihty Chdnge5 mdde by inserters to Lhe
official shdred structure dppedr 10 readers as dtonuc
actlons SphtUng d bucket dppears as an atomic aLtlon
because of Ihe order m which the new bucket pair 1s
written bdck to disk Doubhng the directory dppedrs
aton-nc because of the choice to use the least slgmficant
bits of the pseudokey Deletmg processes use [-locks
because of the previously mentloned problems with
readers If the target bucket 15 too empty, the deleler ~111
try to merge with the partner bucket The simplest
lnterpretatlon for “too emply” 15 that the only reLord
contamed in the bucket 15 Ihe one Lo be deleted Here
“partner” refers to the pdrtner with respect to the target
bucket’s localdepth Merging 15 then possible If the

Figure 4 Fmd Algorithm

Shared data for all of the centralized algorithms

struct buffer {
lnt localdepth,
lnt commonbits,
int count
Int next
int data[numentries]),

int depth depthcount
int dlrectory[l<<maxdepth],

find(z)
E

int pseudokey.
oldpage /*disk page address@/
newpage, /*disk page address*/

struct buffer 6 *current
unsigned m,
current = &B

pseudokey = hash (z)
RhoLock (directory)
oldpage = indexdlrectory (pseudokey &

mask (depth))
RhoLock (oldpage),
UnRhoLock (directory)
getbucket (oldpage current)
m = mask (current -> localdepth)
while ((m & pseudokey) I=

current -> commonbits) {I* wrong buckei '1
RhoLock (newpage = current -> next)
getbucket (newpage Current)
m = mask (current -> localdepth).
UnRhoLock (oldpage),
oldpage = newpage

I

if (search (current z))/' IS z there' *I
found (2).

else
notfound (z),

UnRhoLock (oldpage)

I

108

Flgute 5 Insertion Algorithm

insert(z)
c

int pseudokey.
oldpage.
newpage

int done,
struct buffer A.

t":
*current
*halfl.
l half2,

current = &A.
half1 = &B,
half2 = &C,

pseudokey = hash (z)
AlphaLock (directory).
oldpage = indexdirectory (pseudokey &

mask (depth))
AlohaLock loldoaael
getbucket [oldpage' current),
If (search (current 2)) I

‘/* z is‘already there‘*/
UnAlphaLock (directory),
UnAlphaLock (oldpage)

I
else

If (current -> count I= numentries) (
I* current bucket not full */

UnAlphaLock (directory),
add (current z)
putbucket (oldpage, current)
UnAlphaLock (oldpage)

3
else { /* current is full l /

if (current -> localdepth == depth)
doubledirectory ()

newpage = allocbucket (),
done = split (current halfl. half2

2 newpage)
putbucket (newpage half2),
putbucket (oldpage halfl),
UnAlphaLock (oldpage)
updatedirectory (newpage,

half1 -> localdepth pseudokey)
UnAlphaLock (directory).
if ('done)

insert (2).
I

partners have the same localdepth (and it 1s not 1) Iwo
buckets are defined as partners with respect to hi1
poslhon d If their commonbits match m bits d 1 to 1 and
differ at bit d (where the least sigmficant bit IS
numbered 1) Suppose we wdnt to merge bucket f1 wlth
its partner bucket C [-lockmg the partner 15
straightforward if C follows B in the linked ordering of
buckets OtherwIse this action actually involves
temporarily releasing the lock on R and requesting [-
locks on C and B in order This avolds deadlock with a
reader following next hnks from C to B Alternauvely,
the reader could have held the p-lock on the directory
unfil it had the nght bucket, but this would be a more
pessimistic approach and would have to be abandoned
m the next solution anyway Detectmg the Londltlon
necessary for halvmg the directory could be done In

several ways Here, a depthcount field contauung the
number of buckets with locdldepth = depth IS
maintamed by structure modlfymg operations (e g
splittmg a bucket of localdepth = depth-l would ddd
two, merging two buLkew of localdepth = depth would
sublrdc.1 two, halving the directory would mvolve a scan
of directory contents to determme depthLount for the
new depth by comp,mng correspondmg entries In the
top and bottom halves for pomters whlLh differ, and
doubling the directory would set it to Lero)

2.3 Correctness of the First Solution

Showing the correctness of this solution requires a
proof that it is deadlock free and that requested
operauons perform correctly both with respeL1 to the
target key and the integrity of the data structure
Speafically, a key to be mserted (deleted) should be
present (absent) when the update termmates If the
destred data for a find operation 1s in the file dnd not
the SubJect of a concurrent update operdllon, 11 should
be found

The freedom from deadlock argument depends on
the fact that locks are requested according to an ordering
on the lockable components of the structure 1 he
directory 1s always locked first, followed by one of the
buckets While a bucket is locked, dddltlonal locks dre
requested only on buckets reachable from It via next
links The only processes that ever attempt to lo& more
than one bucket are those executing find or delete
operations Readers follow next hnks from buckets they
have locked Deleters attempt to lock both partners of a
potential merge For as long as dny two buckets remdln
m the hdshfik, the ordering imposed on them by
reachability through next links remams the same and
between any two partner buckets, there 1s a pdth from
the “0” partner to the “1” partner I hus d process trying
to delete from the “1” pdrtner will have Lo releae 11s
lock on that bucket 111 order to get both partners locked
accordmg to the ordermg In ddditlon, It IS lmposstble
for a process to read a pomter for a bucket that ~111 be
deallocated before it can make Its lock request since a
deleter excludes other processes from parts of the ddta
structure that contain pomters to the buckets being
removed fhis point IS important to ensure that lock
requests can eventually be sausfied

It is almost trivial to show the correctness of update
operations m this solution slnLe they are essentially
sequential Removing or adding a key to the hash file
depends first of dll on the upddtlng process getting to
the right bucket SmLe a IoLk 1s held on the directory
while an updater initldlly redds the buLket pointer and
kept unU1 the duectory reflects all changes m the
structure resulUng from its update, the mformauon seen
by updaters when they read the directory is the same as
It would be If updates were completely serial Arriving at
the right bucket, the updater must also see the right
version of It Agam a lock which excludes other upddters
1s required in order to redd the bucket contents lnto
prtvate storage and 1s held until the bucket 1s rewritten
(or lt IS discovered that no change 1s needed) I hus
previous updaters have made their modifications known
by the time a new upddler gdins its lock Smce updates

109

do not interfere with each other, the data structure
should be correct when no update operations are in
progress

Finally, we must consider interactions belween
readers and updaters The locking protocol ensures thdt
a reader and a deleter are serlahLed according to the
order in which they lock the dlreLtory A deleter
exclusively locks the duectory, the target bucket, and its
partner (when necessary) while modlticatlons are ldklng
place No lntermedldte stdges of the deletion operaton
will be vlslble to other precesses A deleter could
potentially Interfere with d reader if the effects of the
deletion appeared after the reader gamed some
mformation from the file and before that InformatIon
was acted upon (eg the reader gets a bucket pointer
from the directory, the deleter merges that bucket Into
its partner, then the reader tries to follow the pointer)
However, this 1s impossible smce the source of the
reader’s information remams p-locked until the next lock
1s granted 1 his 1s also true when the reader IS following
next lmks Whenever a bucket, A, can be merged MO INS
partner, B, then B’s next link will point to A

By contrast, a reader may see mtermedlate stages of
an insertion operauon but this does not prevent It from
ascertaining the presence or absence of any key other
than the one being added ‘Ihe possible changes In the
data structure caused by an msertmg process are as
follows If the Inserter’s target bucket 1s not full, It 15
replaced m a smgle put operation with the origlnal
contents plus the new record A reader will see either the
old or the new bucket and the only difference 15 the key
being added If the Inserter’s bucket IS full, it will be
replaced by a pair of buckels m which the old contents
are dlstrlbuted between the two accordmg to pseudokey
The new record ~111 be mcluded in the appropriate
partner If there 1s room I he second hdlf of the pdlr 15
wrltten first m a newly allocated disk page and then the
old bucket IS replaced by the first half of the pair
Immediately after the first put, the new bucket IS still
not reachable through pomters In the h&h file lhus
writmg the pair IS equivalent to the single operation of
writmg the first partner A reader which sees a dlreLtory
entry before lt IS upddted to pomt to the new bucket WIII

Figure 6 Deletion Algorithm

delete(z)

c
int pseudokey,

selectedblts
oldpage /* disk address l /
newpage /' disk address */
merged /* disk address */
garbage /* disk address l /

struct buffer B
C

*brother.
*current

unsigned m
current = &El
brother = &C.

pseudokey = hash (z)
XiLock (directory)
selectedbits = pseudokey & mask (depth)
oldpage = indexdirectory (selectedbits),
XlLock (oldpage)
getbucket (oldpage, current)
if ((current -> count > 1) 11

(current -> localdepth == 1)) (
I* current not too empty *I -

UnXiLock (directory).
if (remove (2 current)) /* successful l /

putbucket (oldpage. current),
UnXiLock (oldpage),

,

ilse {
if (search (current, z)) { /* z is there l /

m =leftshiftf 1. current->localdeoth-1)
if ((pseudokey i!. m) I= m) (' '

/* 2 goes in first of pair l /
newpage = current -> next
XiLOci (newpage),
getbucket (newpage brother)
merged = oldpage,
garbage = newpage

1
ilse (/* z goes in second of pair *I

newpaqe =
indexdirectory (selectedbits & -m)

UnXiLock (oldpage),
XiLock (newpagej,.
XlLock (oldpage)
getbucket (newpage brother)
merged = newpage.
garbage = oldpage,
brother -> next = current -> next

I
if (current -> localdepth I=

brother -> localdepth) (
/* not possible to merge these two *I
if (remove (2, current))

putbucket (oldpage current)
-I

ilse { /* mergable */
If ((brother->localdepth--)==depth)

‘depthcount = depthcount - 2
brother -> commonblts =

brother -> commonblts &
mask (brother -> localdepth)

putbucket (merged brother)
if (depthcount == 0)

halvedlrectory ()
else

updatedlrectory (merged
brother -> localdepth + 1
pseudokey)

deallocbucket (garbage)

I
UnXlLock (newpage),

I
UnXiLock (oldpage)
UnXlLock (directory)

get either the old bucket or the first half of the pdlr If
the reader’s desired data has moved to the second half, It
will detect this and follow the next link Finally, the
inserter may need to double the directory RIIS appears
to readers as a smgle operation The duectory spaLe 1s
extended and the old contents copled prior to
incrementmg depth and it 1s the act of incrementing
depth that makes the new duectory entrles vlslble

110

Even assummg farness m the granting of lock
requests (eg FIFO SubJect to the COmpdllblllty
relationshIp), lockout of readers IS possible If their kuget
buckets are constantly changing due to a steady stream
of updates

2.4 Second Solution

The recognized problem with top-down protocols IS
the need to hold a lock on the bottleneck of the
structure while determining If restructuring will be
required This 1s avoided in the next protoLo1 I he idea
1s for updating processes to act like readers durmg their
search for the right bucket rhe procedure for the find
operation 1s the same as before The dlgorithms for
insert and delete are found m 1 lgures 7 and 8

For the insert operation, a p-lock IS placed on the
directory that will be converted to an a-lock If the
dmzctory actually ~111 be modified Other insert or delete
operations can also be active The next pointer is again
used for recovery but now deleted, but not yet
deallocated, buckets also provide a recovery path
Because of the addItIona concurrency, updaters may
also find themselves with the wrong bucket and must
follow the recovery path “Wrong bucket” now Includes
the case where this bucket has been merged Into a
preceedmg bucket 1 he bucket 1s marked as “deleted ”
Since there are no circular p&Is through the next
pointers that are not protected with the deleting
process’s I-locks, this protocol can be shown to be
deadlock free

In addluon to settmg up the merged bucket,
merging now involves marking the old oartner as
“deleted” (we use the commonbits field for this), selung
its next field to point to the merged bucket, UpddtlIIg the
next field of the merged bucket, and writing both
buckets back to secondary storage If it is necessary to
release the 1oLk on the target buLket so thdt .$-locks may
be requested in order on the pdlr to be merged, then a
number of condluons must be checked dfler gammg the
locks These will be elaborated 111 the proof Deleted
buckets and discarded halves of the directory dre
actually deallocdted only dfier ensuring that no proLess
needs them anymore

2 5 Correctness of Second Solutlon

The freedom from deadlock issue has been
comphcated by the presence of deleted buckets and the
delayed a-locking of the directory I he key observation
to be made with regard to the a-locking IS that a process
requesting an a-lock on the directory already holds a II-
lock on it (essentially domg lock conversion) dnd hds dll
the necessary locks on buckets This lock request w11l he
retised if there aheddy is an incompatlble lock on the
directory If this lock is an &ock held by dnother
updater, that process will make no further lock requests
The lock cannot be a [-lock beCdu5e of the existing p-
lock Therefore, there is no possibility of deadlock due
to a-locking Given the way deleted buckets are hdndled
m this soluuon, it 1s not true that the ordering between
two buckets stays the same Ihus, bucket B may be
reachable from bucket A but If they are partners this
relauonship may be reversed as S IS merged into A

Figure 7 lnsertron Algorrthm

insert(z)
c

int pseudokey,
oldpage.
newpage,

int done
struct buffer A.

B. ,. L.
*current,
*halfI,
l half2.

unsigned 8,
current = &A.
half1 = &B.
half2 = &C.

pseudokey = hash (z)
RhoLock (directory)
oldpage = indexdirectory (pseudokey &

mask (depth)),
AlphaLock (oldpage),
getbucket (oldpage current).
m = mask (current -> localdepth)
while ((m & pseudokey) I= current->commonblts)(

/* WRONG BUCKET l /
AlphaLock (newpage = current -> next).
getbucket (newpage current)
m = mask (current -> localdepth)
UnAlphaLock (oldpage)
oldpage = newpage

I
If (search (current, z)) (

/* IS 2 ALREADY THERE' l /
UnRhoLock (directory).
UnAlphaLock (oldpage),

1
else

if (current -> count I= numentries) {
/* CURRENT BUCKET NOT FULL '1

UnRhoLock (directory)
add (current z)
putbucket (oldpage current)
UnAlphaLock (oldpage)

else {/* CURRENT IS FULL -
DIRECTORY WILL BE AFFECTED '1

AlphaLock (directory)
if (current -> localdepth == depth)

doubledirectory (),
newpage = allocbucket (),
done = split (current, halfl, half2,

newpage)
putbucket (newiage half2)
putbucket (oldpage halfl)
updatedirectory (newpage

half1 -> localdepth pseudokey)

UnAlphaLock (oldpage),
UnAlphaLock (directory)
UnRhoLock (directory)
If ('done)

insert (z),

111

Figure 8 Deletion Algorithm
1
else {

delete(z)
I

int pseudokey,
selectedblts,
oldpage.
newpage
garbage
merged,

struct buffer B
c
L

*brother
'current

unsloned m.
current = &B
brother = &C,

pseudokey = hash (z),
RhoLock (directory)
selectedbits = pseudokey & mask (depth),
oldpage = lndexdlrectory (selectedblts),
XlLock (oldpage)
getbucket (oldpage current)
m = mask (current -> localdepth)
while ((m & pseudokey) I= current->commonbits)

(/' WRONG BUCKET l /
XiLock (newpage = current -> next)
getbucket (newpage current)
m = mask (current -> localdepth)
UnXiLock (oldpage),
oldpage = newpage

I
if ((current -> count > 1) 11

(current -1 localdepth == 1)) (
/* CURRENT NOT TOO EMPTY l /

UnRhoLock (directory)
if (remove (2 current))

putbucket (oldpage current)
UnXiLock (oldpage).

1
else {
/* IF EVERYTHING STAYS THE SAME TRY TO MERGE '1

If (t;farch (current z)) (
2 NOT THERE l /

UnXlLock (oldpage)
UnRhoLock (directory)
return

I
else {

m = leftshlft(t current->localdepth-1)
if ((pseudokey & m) I= m) (

/* 2 IN FIRST OF PAIR */
newpage q current -> next,
XiLock (newpage)
getbucket (newpage brother)
garbage = newpage
merged = oldpage

I

else { /* 2 IN SECOND OF PAIR */
newpage =

/* A l /

indexdirectory (selectedblts & -m)
UnXlLock (oldpage)
XlLock (newpage)
getbucket (newpage brother)
If (brother -> next I= oldpage) (

1' OLOPAGE AND NEWPAGE ARE
NOT MERGABLE PARTNERS l /

UnXiLock (newpage)
UnRhoLock (directory)
delete (z)
return

XiLock (oldpage)
getbucket (oldpage, current).
garbage = oldpage
meroed = newoaoe
brother->next z current->next
if ((mask (current->localdepth)

3
3

I
if (current

brother
current

& pseudokey) I=
current->commonbits) {

/* 2 no longer belongs in
oldpage - while waiting
to re-lock oldpage it
may have filled up and
split moving 2 l /

UnXiLock (oldpage)
UnXiLock (newpage)
UnRhoLock (directory),
delete (z)
return

-> localdepth I=
-> localdepth 11
-> count > 1 11

(current -> count == 1 &&
'search (current 2))) (
/* Either it 1s not possible

to merge because bf localdepths
or something happened while
waiting to re-lock oldpage -
more data Inserted ,nto
oldpage so it 1s no longer empty
and maybe then z deleted */

UnXiLock (newpage)
UnRhoLock (directory)
if (remove (z current))

putbucket (oldpage current)
UnXiLock (oldpage).
return,

I
/* MERGE '1

AlphaLock (directory)

If ((brother -> localdepth--) == depth)
depthcount q depthcount - 2

brother -> commonblts =
brother -> commonblts &
mask (brother -> localdepth)

current -> commonbits = deleted
current -> next q merged
putbucket (merged brother)
putbucket (garbage current)
updatedirectory (merged

current->localdepth + 1 pseudokey)
UnXiLock (oldpage)
UnXiLock (newpage)
UnAlphaLock (directory)
UnRhoLock (directory)
XlLock (directory),
XlLock (garbage)
if (depthcount == 0)

halvedirectory ()
deallocbucket (garbage)
UnXlLock (directory)
UnXiLock (garbage)

I
I

3

112

However, it IS not possible for processes tollow~ng the
old ordermg to coexist with processes following ihe new
ordering because the deleter use5 6 locks to en5ure ihdt
alI the processes with old mformallon have cledred out

of the vlclnlty of the merge l’xtrd precaution5 must be
taken by deleters to check that the locking of pdrtners IS
consistent with reachdblhty (line ldbeled A 111 I lgure 8)

This solution allows more concurrency among
updaters than the first solution because of the delay in
a-lockmg for updatmg the directory and in [-loc.klng the
chrectory for garbage collectlon Updaters In their
searching phase are like redders, so arguments for
getting to the right bucket hold for each type of process
With lhls locking scheme, processes are allowed to redd
out of date directory entrles lncludmg pointers to
deleted buckets Imagine d sedrchlng proLess thdt
indexes into the duectory and finds a pomter lo bucket
A as lhdt directory entry 15 about to be chdnged to
reflect a split or merge If A has recently been split, A’s
next hnk will ledd lo the new bucket which conkilns the
records moved from A If A ha5 Just been merged into
1t.s partner, it ~111 be marked d5 deleted, making it the
“wrong bucket” for any sedrchlng process dnd the next
hnk agam will provide recovery Ihe imporlant
observation is that obsolete directory entrles lhdt dre sllll
amble always point to a bucket from which the Lorrect
bucket IS reachable via next links Douhl11lg the
directory appears dtomic 1 indlly, 5edrchlng procesx5 do
not acceS5 the dlreLtory while it IS being shrunk
I>lscardmg deleted component5 15 done in a sep,lrdte
phase wiuch is truly 5erlahLed with respect to other
actions by <-locking

Once an updater arrives at the right bucket and
gains the locks it requues, the actudl modificauons dre
essenudlly serldked ds in the first solution I hus
updater5 work with the most recent ver5ion of thal
bucket However, for a deleter to get to the point where
it has dll the lock5 its needs cdn be 5OmeWhdt involved if
the ldrget bucket 15 the “1” parlner of d potenlidl merge
The deleter must release ils lock on the target bucket,
place a lock on the “0” partner, dnd then re-lock the “1”
partner While this 1s tdkmg pldLe, other update
operations may be affectmg these buLket5 In pdrLiLuldr,
a concurrent insertion could add new record5 to the
target bucket once the deleter’5 lock is released so thdt 11
1s not longer empty enough to allow merging It 15 even
theoretically possible for a stream of inserters to fill up
the tdrget bucket dnd cause a split. thereby moving the
key that 1s to be deleted In addltlon, another deleter
might get the two partners locked and merged before the
deleter we are focusing on does lath of these
condiuons 1s checked for and the pitf& avoided After
gaming the lock on the “0” partner, the deleter Lhecks
whether merging might be possible (the pdrtner’s next
lmk points to the target bucket), dnd If this check fdlls lt
goes back to simply trying to remove its key If the two
buckets are not linked in this way, it may mean Lhe
localdepths do not match or thdl the target bucket ha5
been deleted Attempting to lock the target bucket under
these circumstances would carry with it Ihe ddnger of
deadlock Upon finding the two buckets directly linked
and re-locking the “1” partner, the deleter checks the
empuness of the bucket, whether the desired key 15 51111
there, and whether localdepths st.111 match before going

ahead with the merge Unless the key ha mobed, Lhe
deleter at this point would hdve the nekded IoLks anb no
further interference could occur dt the bucket level

Processes executing the find operauon may
legitimately see either an old or the new ver5lon of the
target bucket No intermediate states are visible (1 e
adding or removing a key 15 a single put operduon,
splitting 1s equivalent to a single put, and merging 15
protected with .$-locks) Differences between old and new
only involve records that are moved to a redchable
bucket or that are the SubJeLt of d concurrent update
operation Note that lockout 1s possible for all processes
wiule they are trying to get the right set of buckets
locked

3. Use with Dlstrlbuted Data

We have presented two approaches to solvmg the
problem of allowing concurrency within a shared
extendible hash file Now we turn to the problem of
dislnbutmg this inform&on Developing a distributed
soluuon rdi5es a number of Issues, dlthough some &re
unique to this parllcular model of computation, the
aspect of achieving a degree of concurrency 15 common
to both distributed and shaed ddla systems lhus a
correct centrahLed soluhon mdy prove to be a good
starting pomt in determining how to ptiution swuctured
data We can a5ses5 the previous algorithms on the basis
of their potenual for distrlbuuon

First 11 must be clear what IS meant by the phrase
“distributmg the data structure” and what our model
a distributed system 15 We dmme there are d number
of processes each encapsulaung Some poruon of the data
structure (I e the entire directory or whole buckets) dnd
acting as a manager for it Certain pieces of the data
structure may be rephLdted m severdl proLe55es
Processes do not share storage (mcludlng seconddry
storage) and they communicate through asynchronous
messages Ihe style of Inessage-pdss1ng used 1n our
protocol depends on reliable delivery, butfering, and
possible anonymity of sender5 (e g port-based
communication ds in [Rashid 801) 1 hese assumptions
allOW the processes to reside on different mdChlIleS
connected by a network, and 5mce this 15 possible,
interactions between processes are poten(ldlly costly
Requests for find, insert, or delete operations may be
forwarded to the appropriate data managers for service

There are a couple of prlnLlples lnfluencmg this
particular design First of all, if dlstrlbutlng the ddta IS
actually going to achieve an increased level of
dVdIldblhty. the directory should be highly accessible
This suggests the need to replicate the directory
information and mamtam consistency to the exlenl that
a request can be made to any of the copies dnd
eventually it will reach the desired data We as5ume thdt
each copy of the directory is mdndged as a whole (I e 11
1s not partiuoned) Given the decision to rephMe this
component of the data structure, the consistency ls5ue
becomes important If a- or g-1oLkmg the directory In
the centralized solutions 15 slrdightforwardly trdusldted
into some actlon involving all copies simultdneously, it
will be an expensive operation and require Some

113

suategies tor avoiding deadlock and dedling with
temporarily mlssmg copies I’hus, the andlogue to global
a-locking should be avoided as much ds possible,
implying that the second of the two previous solutions IS
more compatible with repliLation Although d number of
general purpose mutual consistency algorithms are
avalable [Gifford 79, Stonebraker 79, I homas 791, 11
may be possible to exploit certain propertles of this
problem to arrive at a less synchronized method A
second goal IS to mmlmlLe message traffic Whenever
possible, the mformalon needed for decision making
should be a&able locally Additional modlficahons In
the data structure may be deslrable For example, in the
centralized algorithms it was aueptable to IoLdte a
partner bucket using the directory In the distributed
case, this would mvolve a bucket manager sending an
mquuy message to a directory manager Emally, there
are no constraints to be put on the placement of ddta
One can lmaglne pohc~es thdt would try to group Lertaln
buckets within one server rhn IS reasonable for a slduc
data structure However, ease of growth IS a major goal
both for extendible hash files and for distrlbutmg data
The problem of allocatmg buckets to servers on any
basis other than avalabihty of space 1s a hard problem
for a dynamic data structure such as this and IS not
consldered here

As indicated above, this distnbuted soluhon IS
denved fion the second set of procedures for the
centrahzed hash file I he rephcatlon of the directory IS
the main Justification for choosmg this approach ‘I he
data structure would now appear as 111 Figure 9 Two
copies of the directory are shown A prev hnk has been
added to each bucket that leads to the bucket from
which this bucket originally split off This IS used to find
the “0” partner of a possible merge with mformabon
local to thus manager process Each link represents a pair
conslsting of a long-lived idenufier for a manager port
and a bucket address that IS meaningful to that manager
A version field Introduced into each bucket and each
directory entry 1s used in updatmg directory copies
asynchronously

There are two types of processes, namely directory
managers and bucket managers 1 ach bucket manager IS
responsible for a dlsJoint subset of the buckets F igure
10 shows the message types that flow between the
various processes The information contained in these
messages IS outlined in Figure 11

The procedure for the directory manager processes
1s described in terms of actions taken in response to
messages received The directory manager is designed as
a server which can keep track of several user requests
The locking of the directory in the centrallied soluhon IS
embodied in the manager’s explicit scheduling of
requests for its attenuon Upon receiving a requesf
message, state IS saved in a context table and the request
1s forwarded to the appropriate bucket manager rwo
possible responses may come from a bucket manager,
either bucketdone or update Bucketdone will generally
signify that no directory modificauons are needed and
the directory manager may now forget about tins
request An update message schedules an upddte on the
local copy according to version number and notifies all
other directory managers by broadcasting a copyupdate

Directory Buckets

00

01

10

11

00

01

10

11

DEPTHCOUNT = 2 LOCALDEPTH = 2

COMMONBITS - 00
DEPTH = 2

VERSION

LOCALDEPTH = 2

VERSION COMMONBITS = 10

VERSION

LOCALDEPTH = 1
DEPTHCOUNT = 2

COMMONSlTS = 1

Dtstrlbuted Extendible Hash File

message For each outstandmg unacknowledged remote
directory modlficduon, a counter IS Incremented thdt
serves one of the purposes of an 0 lock (I e preventing
garbage collectlon) A bucket may not be dedllocdted
unul all duectorles send an acknowledge messdge Upon
receivmg a copyupddte message, a directory mdndger
schedules the update on 1t.s local copy and when the
changes have been apphed (and m the caSe of delete
operations, when the equivalent of [-locking occurs),
acknowledgements are sent

Because obsolete directory mformatlon IS usable,
the multiple copy update does not hdve to be strictly
synchromzed (m the sense of an atomic transactlon)
However, the ordermg of different duectory
modifications due to operauons on the Same blrcker
should be the same across all copies and determmed by
the order m which the bucket operations are performed
Each bucket contalns a version number that InLredses
with each update that causes a directory update The
version number In each directory entry should match the
version of the bucket It pomts to when the directory 1s
completely up to ddte 1 he followuig exdmple llluslrdles

114

REOUEST - >

INSERT - >

DELETE - >

GARBAGECOLLECT I >

WRONGBUCKET

COPYUPDATE

Directory repltcated Buckets distributed
wlthm each Directory among Bucket MandgerS

Manager

Figure 10 Protocols for the Distributed

Hashing Algorithms

why thus ordenng approach IS adopted Suppose first d
split operation is performed almost lmmedldtely
followed by a merge mvolvmg those two buckels
Imagine a directory manager thdt hears dbout these
updates m the opposite order and apphes them 1 he
directory update related to the merge would essenudlly
have no effect since the spht had not yet been processed
-1 he subsequent update related 10 the spht would result
In duectory entnes ledding to d deleted bucket At this
pomt the directory IS usable smLe next links provide
recovery However, since it appears thdt both mebsdges
have been serviced, the deleted buLkel could then be
dallocated ?hls would leave that copy of the dlreLtory
In a truly mcorrect state from which recovery would be
lmposslble

For slmphclty, the bucket manager IS presented
here as a front end process and a set of assoLlated
processes that are assumed to reside at the sdme slle and
share secondary memory ‘I hese processes taken together
perform the duties of the bucket manager and preserve
the specified Interface w1t.h other processes Ihe
procedures executed by these processes are detalled In
[Elhs 821 The front end process serves as the mitral
contact for its set of buckets The auxiliary processes

operate much hke processes In the LentrdllLed solution
Until they requue pieces of the ddta structure thdt dre
outside this manager’s domdln We hdve dlready
dlscussed the directory upddte messages Protocols are
also avalable for off-slle searLhmg (wrongbucket
message), merging (mergeup and mergedown messdges),
and sphttmg (s@bucXet messdge) 1 aklng off-site
actlons and the need to exchdnge messdges Into dCc.ount,
the procedures are not radlLdlly different from those in
the centralized solution

In this report. we Just suggest what the proof Of
correctness would require Given the correctness of the
centralized algorithm, one approach is to show that the
distributed lmplementahon 15 In some sense equivalent
By following an execution of a user’s request through
the various processes that become mvolved and
comparing this with the steps tdken by the one process
handhng that request In d cent.r&ed system, the
correspondence between execuuon sequences cdn be
seen This needs to be formahted In addltlon, It IS
necessary to show that the multiple copy upddte strdtegy
applied to the rephcdted dIrectones 15 correct We must
also demonstrate thdt the multlplexmg of servers and the
messdge flows between them do not Introduce dt!ddloLk

Crash tolerance has not been speclfically addressed but
our solution does not appear to present maJor ObQdLles
to mcorporatmg It lhese Issues will be elaborated upon
In a future paper

4. Summary

Extendible hash files have been proposed a5 a ddta
structure for sequential find, Insert, dnd delete
operations In this report, we have presented two
solutions that allow concurrent operdtlons on a shghtly
modified structure As In proposals for concurrency in
B-tree variants, mdkmg modltiL&ons to the ddta
structure to provide alternate pathways to the desired
data is a fundamental technique In d future paper, we
~111 evaluate the performance of these dlgorlthms and
comparable B-tree solutions

Starting from one of these solutions for concurrency
In a centrahLed hdsh file, we developed a distnbuted
version ‘Ihe Important point is that concurrent
algonthms involving shared storage may often provide
Insights into how to partition and/or replicate data I ha
suggests a methodology in which the problems of
correctly introducing concurrency dnd of distributing the
computauon are addressed as distmct issues

Acknowledgments

I would like to t-hank Jurg Nlevergelt for stimulating
this work

115

message Id

Requtst

Bucketdone

Update

Copy update

Ack for Copy update

Rnd, Insert, Delete

Garbage Collect

data in message

dtsutd key
op (lindJmsertJdeIete)
user sport

transacuon #
success (truelfalse)

transacuon #
old laal depth
vcrson # of 0 partner
verson # of “1” partner
new page address-
id of bucket manager
success (truejfalse)

op (Insert/delete)
pseudo key
old local dtpth
verSlon # of 0 partner
version # of ’ 1 partner
new page address
Id of bucket manager
acknowledgement port

desired key
transacuon #
page address
user’s port
directory manager’s reply port
pseudo key

hst of page addrffses

Splnbuckct mrlnrlgcr 5 icply pint
buflcr WILLIILS ~IILW li,llf

Figure11 Messages

5. References

SplltrLply IILW p<lgL ‘IddIL\\
id of bucket III<III<I~LI

Mcrgedown pnrtncr 5 atltlrt\\
loLaI depth
bucket mdn.,gcr s iqly port

M D ll~ply

Mergeup

M U Reply

Go ahcad next lmk
rnxt bucket III.IIM~LI KI

vuwn #
SULLL% (IruLJl<d\L)

[Bayer 771

[EIhs 821

[EIhs 801

[Fagm 791

R Bayer and M Schkolmck
“Concurrency of Operauons on B trees”,
ACTA Informatrca, 9, 1977 1 21

CS EIhs
“Extendble Hashmg for Concurrent Operauons and
Dlstrlbuted Data, ’
TR110, Computer Science Department, Umv of
Rochester, October 1982

C EIhs
Concurrent Search and Inseruon In 2 3 Trees,”

ACTA Informatlca 14, 1980, 63 86

[Lehman 811 P Lehman and S B Yao
“Efficient Lockmg for Concurrent Operauons on B
Tred.
ACM T0D.S. Vol 6, No 4, December 1981 650
670

[Miller 78) R M~llcr and L Snyder,
“Muluplt Access to B trees”,
Proc Con/ lnjormutlon Suences & Systems
(prelmnnary report) March 1978

[RasJud SO] R RasJnd.

R Fagm, J Nlevergelt. N Rppenger, and H R

‘Extendible Hashmg A Fast Access Method for
Strong

Dynarmc F&s,” -
ACM TODS, Vol 4, No 3, September, 1979, 315

“An I&process Comrnumcauon Faclhty for
UNIX ’
CMU CS 80 124, CameBe Mellon University, June
1980

\Stonebraker

355

[Glfford 791 D Glfford,
‘WeIghted Votmg for Rephcated Data”
Proceedmgs, 7* Symposium on OS Principles.
December 1979

[Thomas 791

[Kwong 79) Y S Kwong and D Wood,
“New Method for Concurrencv m B trees”.
IEEE Transactions on Softwar; Engneermg, Vol
SE 8 No 3, May 1982

79) M Stonebraker,
“Concurrency Control and Consistency of Muluple
Copies of Data 111 Dlstrlbutcd INGRLS ,
IEEE Transuctlons 011 SoJinare Ikgmeermg, Vol
SE 5, No 3, May 1979

R H Thomas,
“A MaJonty Consensus Approach to Concurrency
Control for Mulnple Copy Databases
ACM TODS, Vol 4, No 2 July 1979, 180 209

116

