
E

Extendible Hashing

Donghui Zhang1, Yannis Manolopoulos2,
Yannis Theodoridis3, and Vassilis J. Tsotras4
1Paradigm4, Inc, Waltham, MA, USA
2Aristotle University, Thessaloniki, Greece
3University of Piraeus, Piraeus, Greece
4University of California-Riverside, Riverside,
CA, USA

Definition

Extendible hashing is a dynamically updateable
disk-based index structure which implements a
hashing scheme utilizing a directory. The index
is used to support exact match queries, i.e., find
the record with a given key. Compared with
the BC-tree index which also supports exact
match queries (in logarithmic number of I/Os),
extendible hashing has better expected query
cost O(1) I/O. Compared with linear hashing,
extendible hashing does not have any overflow
page. Overflows are handled by doubling the
directory which logically doubles the number of
buckets. Physically, only the overflown bucket is
split.

Historical Background

The extendible hashing scheme was introduced
by [1]. A hash table is an in-memory data struc-

ture that associates keys with values. The primary
operation it supports efficiently is a lookup: given
a key, find the corresponding value. It works by
transforming the key using a hash function into a
hash, a number that is used as an index in an array
to locate the desired location where the values
should be. Multiple keys may be hashed to the
same bucket, and all keys in a bucket should be
searched upon a query. Hash tables are often used
to implement associative arrays, sets, and caches.
Like arrays, hash tables have O(1) lookup cost on
average.

Foundations

Structure
Extendible hashing uses a directory to access its
buckets. This directory is usually small enough
to be kept in main memory and has the form
of an array with 2d entries, each entry storing a
bucket address (pointer to a bucket). The variable
d is called the global depth of the directory.
To decide where a key k is stored, extendible
hashing uses the last d bits of some adopted
hash function h(k) to choose the directory entry.
Multiple directory entries may point to the same
bucket. Every bucket has a local depth leqd. The
difference between local depth and global depth
affects overflow handling.

An example of extendible hashing is shown
in Fig. 1. Here there are four directory entries
and four buckets. The global depth and all the
four local depths are 2. For simplicity assume the

© Springer Science+Business Media LLC 2017
L. Liu, M.T. Özsu (eds.), Encyclopedia of Database Systems,
DOI 10.1007/978-1-4899-7993-3_741-2



2 Extendible Hashing

00

01

10

11

2

2

64 44 Bucket A

Bucket B

Bucket C

Bucket D

2

92

2

10

2

3 31 15 7

55 5

Extendible Hashing, Fig. 1 Illustration of the
extendible hashing

adopted hash function is h(k)D k. For instance, to
search for record 15, one refers to directory entry
15% 4D 3 (or 11 in binary format), which points
to bucket D.

Overflow Handling
If a bucket overflow happens, the bucket is split
into two. The directory may or may not double,
depending on whether the local depth of the
overflown bucket was equal to the global depth
before split.

If the local depth was equal to global depth,
d bits are not enough to distinguish the search
values of the overflown bucket. Thus a directory
doubling occurs, which effectively uses one more
bit from the hash value. The directory size is then
doubled (this does not mean that the number of
buckets is doubled as buckets will share directory
entries). As an example, Fig. 2 illustrates ex-
tendible hashing after inserting a new record with
key 63 into Fig. 1. Bucket D overflows and the
records in it are redistributed between D (where
the last three bits of a record’s hash value are 011)
and D0 (where the last three bits of a record’s
hash value are 111). The directory doubles. The
global depth is increased by one. The local depth
of buckets D and D0 are increased by one, while
the local depth of the other buckets remains to be
two. Except 111, which points to the new bucket
D0, each of the new directory entries points to the
existing bucket which shares the last two bits. For
instance, directory entry 101 points to the bucket
referenced by directory entry 001.

3

000 2

2

2

10

3

3

3

31 15 7 63 Bucket D’

Bucket D

Bucket C

Bucket B

Bucket A

9 25 5

64 44

001

010

011

100

101

110

111

Extendible Hashing, Fig. 2 The directory doubles after
inserting 63 into Fig. 1

In general, if the local depth of a bucket is d0,
the number of directory entries pointing to the
bucket is 2d�d0 . All these directory entries share
the last d0 bits.

To split an overflown bucket whose local depth
is smaller than the global depth, one does not
need to double the size of the directory. Instead,
half of the 2d�d0 directory entries will point to the
new bucket, and the local depth of both the over-
flown bucket and its split image are increased by
one. For instance, Fig. 3 illustrates the extendible
hashing after inserting 17 and 13 into Fig. 2.
Bucket B overflows and a split image, bucket B0,
is created. There are two directory entries (001
and 101) that pointed to B before the split. Half of
them (101) now points to the split image B0. The
local depth of both buckets B and B0 are increased
by one.

Discussion
Deletion may cause a bucket to become empty,
in which case it can be merged with its buddy
bucket. The buddy bucket is referenced by the
directory entry which shares the last (local
depth � 1) bits. For instance, the buckets
referenced by direction entries 1111 and 0111
are buddy buckets. Many deletions can cause
the directory to halve its size and thus decrease
its global depth. This is triggered by the bucket
merging which causes all local depth to be strictly
smaller than the global depth.



Extendible Hashing 3

E

Extendible Hashing,
Fig. 3 The directory does
not double after inserting
17 and 13 into Fig. 2

000

3

2

64

3

9 25

2

10

3

3

3

3

5 13

31 15 7 63

17

44 Bucket A

Bucket B

Bucket B’

Bucket C

Bucket D

Bucket D’

001

010

011

100

101

110

111

The fact that extendible hashing does not use
any overflow page may significantly increase the
directory size, as one insertion may cause the
directory to double more than once. Consider
the case when global depth is 3, and the bucket
referenced by directory entry 001 overflows with
five records 1, 17, 33, 49, 65. The directory is
doubled. Directory entries 0001 and 1001 point to
the overflown bucket and the split image. All the
five keys will remain in the original bucket which
is again overflowing. Therefore the directory has
to be doubled again.

To alleviate this problem, one can allow a
certain degree of overflow page links. For in-
stance, whenever the fraction of buckets with
overflow pages becomes larger than 1%, double
the directory.

Key Applications

Extendible hashing can be used in applications
where exact match query is the most important
query such as hash join [2].

Cross-References

�Bloom Filter
�Hash-Based Indexing
�Hashing
�Linear Hashing

Recommended Reading

1. Fagin R, Nievergelt J, Pippenger N, Strong HR.
Extendible hashing: a fast access method for dynamic
files. ACM Trans Database Syst. 1979;4(3):315–44.

2. Schneider DA, DeWitt DJ. Tradeoffs in processing
complex join queries via hashing in multiprocessor
database machines. In: Proceedings of the 16th Inter-
national Conference on Very Large Data Bases. San
Francisco; 1990. p. 469–80.

http://link.springer.com/Bloom Filter
http://link.springer.com/Hash-Based Indexing
http://link.springer.com/Hashing
http://link.springer.com/Linear Hashing

	Extendible Hashing
	Definition
	Historical Background
	Foundations
	Structure
	Overflow Handling
	Discussion

	Key Applications
	Cross-References
	Recommended Reading




