
Lecture 21: Hash functions

Hash functions

Hash tables are one of the most useful data structures ever invented.
Unfortunately, they are also one of the most misused. Code built using hash
tables often falls far short of achievable performance. There are two reasons
for this:

• Clients choose poor hash functions that do not act like random number
generators, invalidating the simple uniform hashing assumption.

• Hash table abstractions do not adequately specify what is required of the
hash function, or make it difficult to provide a good hash function.

Clearly, a bad hash function can destroy our attempts at a constant running
time. A lot of obvious hash function choices are bad. For example, if we're
mapping names to phone numbers, then hashing each name to its length
would be a very poor function, as would a hash function that used only the
first name, or only the last name. We want our hash function to use all of the
information in the key. This is a bit of an art. While hash tables are extremely
effective when used well, all too often poor hash functions are used that
sabotage performance.

Recall that hash tables work well when the hash function satisfies the simple
uniform hashing assumption -- that the hash function should look random. If it
is to look random, this means that any change to a key, even a small one,
should change the bucket index in an apparently random way. If we imagine
writing the bucket index as a binary number, a small change to the key should
randomly flip the bits in the bucket index. This is called information
diffusion. For example, a one-bit change to the key should cause every bit in
the index to flip with 1/2 probability.

Client vs. implementer

As we've described it, the hash function is a single function that maps from
the key type to a bucket index. In practice, the hash function is the
composition of two functions, one provided by the client and one by the



implementer. This is because the implementer doesn't understand the element
type, the client doesn't know how many buckets there are, and the
implementer probably doesn't trust the client to achieve diffusion.

The client function hclient first converts the key into an integer hash code, and
the implementation function himpl converts the hash code into a bucket index.
The actual hash function is the composition of these two functions,
hclient∘himpl:

To see what goes wrong, suppose our hash code function on objects is the
memory address of the objects, as in Java. This is the usual choice. And
suppose that our implementation hash function is like the one in SML/NJ; it
takes the hash code modulo the number of buckets, where the number of
buckets is always a power of two. This is also the usual implementation-side
choice. But memory addresses are typically equal to zero modulo 16, so at
most 1/16 of the buckets will be used, and the performance of the hash table
will be 16 times slower than one might expect.

Measuring clustering

When the distribution of keys into buckets is not random, we say that the hash
table exhibits clustering. It's a good idea to test your function to make sure it
does not exhibit clustering with the data. With any hash function, it is possible
to generate data that cause it to behave poorly, but a good hash function will
make this unlikely.

A good way to determine whether your hash function is working well is to
measure clustering. If bucket i contains xi elements, then a good measure of
clustering is the following:

C = (m/n−1)(∑i(xi
2)/n) - 1).

A uniform hash function produces clustering C near 1.0 with high probability.
A clustering measure of C > 1 greater than one means that the performance of
the hash table is slowed down by clustering by approximately a factor of C.
For example, if m=n and all elements are hashed into one bucket, the



clustering measure evaluates to n. If the hash function is perfect and every
element lands in its own bucket, the clustering measure will be 0. If the
clustering measure is less than 1.0, the hash function is spreading elements out
more evenly than a random hash function would; not something to count on!

Unfortunately most hash table implementations do not give the client a way to
measure clustering. This means the client can't directly tell whether the hash
function is performing well or not. Hash table designers should provide some
clustering estimation as part of the interface. Note that it's not necessary to
compute the sum of squares of all bucket lengths; picking a few at random is
cheaper and usually good enough.

The reason the clustering measure works is because it is based on an estimate
of the variance of the distribution of bucket sizes. If clustering is occurring,
some buckets will have more elements than they should, and some will have
fewer. So there will be a wider range of bucket sizes than one would expect
from a random hash function.

For those who have taken some probability theory: Consider
bucket i containing xi elements. For each of the n elements, we can
imagine a random variable ej, whose value is 1 if the element lands
in bucket i (with probability 1/m), and 0 otherwise. The bucket size
xi is a random variable that is the sum of all these random
variables:

xi = ∑j∈1..n ej

Let's write ⟨x⟩ for the expected value of variable x, and Var(x) for
the variance of x, which is equal to ⟨(x - ⟨x⟩)2⟩ = ⟨x2⟩ - ⟨x⟩2. Then
we have:

⟨ej⟩ = 1/m

⟨ej
2⟩ = 1/m

Var(ej) = 1/m - 1/m2

⟨xi⟩ = n⟨ej⟩ = α

The variance of the sum of independent random variables is the
sum of their variances. If we assume that the ej are independent
random variables, then:



Var(xi) = n Var(ej) = α - α/m = ⟨xi
2⟩ - ⟨xi⟩

2

⟨xi
2⟩ = Var(xi) + ⟨xi⟩

2

= α(1 - 1/m) + α2

Now, if we sum up all m of the variables xi, and divide by n, as in
the formula, we should effectively divide this by α:

(1/n) ⟨∑ xi
2⟩ = (1/α)⟨xi

2⟩ = 1 - 1/m + α

Subtracting 1, we get (n−1)/m. The clustering measure multiplies
this by its reciprocal to get 1.

Suppose instead we had a hash function that hit only one of every c
buckets, but was random among those buckets. In this case, for the
non-empty buckets, we'd have

⟨ej⟩ = ⟨ej
2⟩ = c/m

⟨xi⟩ = αc

(1/n) ⟨∑ xi
2⟩ - 1 = αc − c/m

= c(n-1)/m

Therefore, the clustering measure evaluates in this case to c. In
other words, if the clustering measure gives a value significantly
greater than one, it is like having a hash function that doesn't hit a
substantial fraction of buckets.

Designing a hash function

For a hash table to work well, we want the hash function to have two
properties:

• Injection: for two keys k1 ≠ k2, the hash function should give different
results h(k1) ≠ h(k2), with probability m-1/m.

• Diffusion (stronger than injection): if k1 ≠ k2, knowing h(k1) gives no
information about h(k2). For example, if k2 is exactly the same as k1,
except for one bit, then every bit in h(k2) should change with 1/2
probability compared to h(k1). Knowing the bits of h(k1) does not give
any information about the bits of h(k2).



As a hash table designer, you need to figure out which of the client hash
function and the implementation hash function is going to provide diffusion.
For example, Java hash tables provide (somewhat weak) information
diffusion, allowing the client hashcode computation to just aim for the
injection property. In SML/NJ hash tables, the implementation provide only
the injection property. Regardless, the hash table specification should say
whether the client is expected to provide a hash code with good diffusion
(unfortunately, few do).

If clients are sufficiently savvy, it makes sense to push the diffusion onto
them, leaving the hash table implementation as simple and fast as possible.
The easy way to accomplish this is to break the computation of the bucket
index into three steps.

1. Serialization: Transform the key into a stream of bytes that contains all
of the information in the original key. Two equal keys must result in the
same byte stream. Two byte streams should be equal only if the keys are
actually equal. How to do this depends on the form of the key. If the key
is a string, then the stream of bytes would simply be the characters of the
string.

2. Diffusion: Map the stream of bytes into a large integer x in a way that
causes every change in the stream to affect the bits of x apparently
randomly. There are a number of good off-the-shelf ways to accomplish
this, with a tradeoff in performance versus randomness (and security).

3. Compute the hash bucket index as x mod m. This is particularly cheap if
m is a power of two, but see the caveats below.

Therefore the client-side hash function hclient(k) is defined as (hdiff ∘ hserial)
(k) mod m, where hdiff implements diffusion.

There are several different good ways to implement diffusion (step 2):
multiplicative hashing, modular hashing, cyclic redundancy checks, and
secure hash functions such as MD5 and SHA-1. They offer a tradeoff between
collision resistance and performance.

Usually, hash tables are designed in a way that doesn't let the client fully
control the hash function. Instead, the client is expected to implement steps 1
and 2 to produce an integer hash code, as in Java. The implementation side
then uses the hash code and the value of m (usually not exposed to the client,
unfortunately) to compute the bucket index.



Some hash table implementations expect the hash code to look completely
random, because they directly use the low-order bits of the hash code as a
bucket index, throwing away the information in the high-order bits. Other
hash table implementations take a hash code and put it through an additional
step of applying an integer hash function that provides additional diffusion.
With these implementations, the client doesn't have to be as careful to produce
a good hash code,

Any hash table interface should specify whether the hash function is expected
to look random. If the client can't tell from the interface whether this is the
case, the safest thing is to compute a high-quality hash code by hashing into
the space of all integers. This may duplicate work done on the implementation
side, but it's better than having a lot of collisions.

Modular hashing

With modular hashing, the hash function is simply h(k) = k mod m for some
m (usually, the number of buckets). The value k is an integer hash code
generated from the key. If m is a power of two (i.e., m=2p), then h(k) is just
the p lowest-order bits of k. The SML/NJ implementation of hash tables does
modular hashing with m equal to a power of two. This is very fast but the the
client needs to design the hash function carefully.

The Java Hashmap class is a little friendlier but also slower: it uses modular
hashing with m equal to a prime number. Modulo operations can be
accelerated by precomputing 1/m as a fixed-point number, e.g. (231/m). A
precomputed table of various primes and their fixed-point reciprocals is
therefore useful with this approach, because the implementation can then use
multiplication instead of division to implement the mod operation.

Multiplicative hashing

A faster but often misused alternative is multiplicative hashing, in which the
hash index is computed as ⌊m * frac(ka)⌋. Here k is again an integer hash
code, a is a real number and frac is the function that returns the fractional part
of a real number. Multiplicative hashing sets the hash index from the
fractional part of multiplying k by a large real number. It's faster if this
computation is done using fixed point rather than floating point, which is
accomplished by computing (ka/2q) mod m for appropriately chosen integer
values of a, m, and q. So q determines the number of bits of precision in the



fractional part of a.

Here is an example of multiplicative hashing code, written assuming a word
size of 32 bits:

val multiplier: Word.word = 0wx678DDE6F 
fun findBucket({arr, nelem}, e) (f:bucket array*int*bucket*elem->'a) =
let
val n = Word.fromInt(Array.length(arr))
val d = (0wxFFFFFFF div n)+0w1
val i = Word.toInt(Word.fromInt(Hash.hash(e)) * multiplier div d)
val b = Array.sub(arr, i)

in
      f(arr, i, b, e)

end

Multiplicative hashing works well for the same reason that linear congruential
multipliers generate apparently random numbers—it's like generating a
pseudo-random number with the hashcode as the seed. The multiplier a
should be large and its binary representation should be a "random" mix of 1's
and 0's. Multiplicative hashing is cheaper than modular hashing because
multiplication is usually considerably faster than division (or mod). It also
works well with a bucket array of size m=2p, which is convenient.

In the fixed-point version, The division by 2q is crucial. The common mistake
when doing multiplicative hashing is to forget to do it, and in fact you can
find web pages highly ranked by Google that explain multiplicative hashing
without this step. Without this division, there is little point to multiplying by a,
because ka mod m = (k mod m) * (a mod m) mod m . This is no better than
modular hashing with a modulus of m, and quite possibly worse.

Cyclic redundancy checks (CRCs)

For a longer stream of serialized key data, a cyclic redundancy check (CRC)
makes a good, reasonably fast hash function. A CRC of a data stream is the
remainder after performing a long division of the data (treated as a large
binary number), but using exclusive or instead of subtraction at each long
division step. This corresponds to computing a remainder in the field of
polynomials with binary coefficients. CRCs can be computed very quickly in
specialized hardware. Fast software CRC algorithms rely on precomputed
tables of data. As a rule of thumb, CRCs are about 3-4 times slower than
multiplicative hashing.

Cryptographic hash functions



Sometimes software systems are used by adversaries who might try to pick
keys that collide in the hash function, thereby making the system have poor
performance. Cryptographic hash functions are hash functions that try to
make it computationally infeasible to invert them: if you know h(x), there is
no way to compute x that is asymptotically faster than just trying all possible
values and see which one hashes to the right result. Usually these functions
also try to make it hard to find different values of x that cause collisions; they
are collision-resistant. Examples of cryptographic hash functions are MD5
and SHA-1. MD5 is not as strong as once thought, but it is roughly four times
faster than SHA-1 and usually still fine for generating hash table indices. As a
rule of thumb, MD5 is about twice as slow as using a CRC.

Precomputing hash codes

High-quality hash functions can be expensive. If the same values are being
hashed repeatedly, one trick is to precompute their hash codes and store them
with the value. Hash tables can also store the full hash codes of values, which
makes scanning down one bucket fast. In fact, if the hash code is long and the
hash function is high-quality (e.g., 64+ bits of a properly constructed MD5
digest), two keys with the same hash code are almost certainly the same value.
Your computer is then more likely to get a wrong answer from a cosmic ray
hitting it than from a hash code collision.


