
HOW TO ROLL YOUR OWN DBM/NDBM 
Ozan S. Yigit

DRAFT Copyright 1989,1990 Ozan S. Yigit]

Introduction

External Hashing is a well-known technique for organizing direct-access
files, and has been investigated in the last two decades. If the key-order
related operations are not required, external-hashing is often the choice
for a fast (one or at most two page faults) database interface.

Such a database system (dbm or ndbm) is available under some versions of
the Un*x operating system, but general unavailability under *all* versions
of Un*x, as well as the lack of source code implies that a re-write of an
dbm/ndbm work-alike would be welcomed.

The rest of this document describes a particular implementation of an
external hashing scheme, called "Dynamic Hashing", by Per-Ake Larson, BIT
18 (1978) pp 184-201. This implementation (partly based on section 5:
refinements and variations) is believed to resemble dbm/ndbm
implementation under Un*x, and achieves comparable performance, using
the same index/data file scheme. It requires essentially the exact DBM
data structure presented in ndbm.h. A detailed discussion of Dynamic
Hashing, and its analysis may be found in Larson's paper.

A simplified overview

As with most other external hashing schemes, Dynamic Hashing requires a
data file, and an index to the data file. In the case of Dynamic Hashing,
the index is a forest of binary hash trees, which are very closely related
to binary tries, or radix search tries. The data file is simply a number
of buckets (pages) of fixed size. A record R to be stored is assumed to
contain a unique key K.

The file is loaded by using a hash function H0 on K and the index to locate
the appropriate buckets.  Once a bucket is full, it is split, a new bucket
is allocated, and all the records in the overflowing bucket is distributed
between the two buckets.  Index is updated accordingly.

The following index depicts a data file of five buckets as a result of
three splits: (the leafs point to the data pages in the data file)

[ 1 ] roots [ 2 ]
/   \ /   \

( 10 ) ( 11 ) ( 20 ) [ 21 ]
  |   |   | /    \
    ( 210 ) ( 211 )

   |    |

What happened above is as follows: bucket 1 filled up, split into two
buckets pointed by nodes 10 and 11. Bucket 2 filled up, split into two
buckets pointed by nodes 20 and 21 and so on.

In order to locate a bucket in which the key resides during the lookup,
the decision to whether to put a record in the left or the right bucket
when splitting must be uniquely determined by the key of the record. This



also determines a unique path through the tree for a given key.

In order to facilitate this, Larson uses a function B [suggested to be a
pseudo-random number generator that is designed to return 0 or 1 with
probability 0.5 when called], which maps the key into an infinite binary
sequence, B(K) = (Di...Dn) where D is 0 or 1, for i = 0, 1, 2 ... n
[random number generator is seeded by another hash function H1(K) and will
return the same infinite sequence given the same seed] This sequence can
be used to determine a unique path in a binary tree: if the next digit D
in the binary sequence is 0, take the left branch, otherwise that the
right branch of the tree etc.

To insert a record, R with key K, H0(K) is computed to locate the root of
the tree. Starting from the root, a unique path determined by B(K) is
taken until a leaf node is reached, and the record is inserted into the
bucket pointed by the leaf node. If the bucket is full, the node is split
into two leaf nodes (itself is no longer a leaf), a new bucket is
allocated and every key in the overflowed bucket is split between the two
buckets, using the next digit in the binary sequence for each key. [This
is also known as the "digital splitting".]

In the early sections of his paper, Larson presents the index tree as a
conventional data structure, with a type tag, left-son, right-son etc.
fields.  The tag field indicates whether the node is an internal node (1)
or a leaf node (0).  The following is a somewhat altered chunk of his
algorithm for record insertion in a nawk-like pseudo-code.

store(key, dat) {
node = findroot(H0(K)) # rootnode
initB(H1(K)) # random n generator initialized

#
# traverse the tree
#

for (seqc = 0; TTAG(node) == 1; seqc++)
if (B() == 0)

node = LSON(node)
else

node = RSON(node)
#
# found a leaf node [TTAG(node) == 0]
#

while (putpage(node, key, dat) == 0) { # cannot insert ??
... obtain new buckets # split time
foreach K in PAGE(node)

initB(H1(K))
... call B seqc times # skip the initial sequence
if (B() == 0) # use the next one

movekey(bucket-a) 
else

movekey(bucket-b)
... etc

}
... etc

}

In the above [brief] algorithm, seqc simply counts the number of digits
used to reach to a leaf node. This count is later used during the split



process, and the *next* digit in the sequence is used to split the keys
into two pages. It should also be obvious that the crucial part of the
algorithm is the tree-traversal, as it is used to traverse a unique path
for each key that ends in a leaf node. This portion is needed for insertion,
deletion and lookup operations.

Refinements and Variations

At this point, there is enough material to consider Larson's refinements
and variations. [Interested reader should consult the original paper for a
through and probably a more accurate description of the algorithms] He
observes that a bit-vector is adequate to reflect the structure of the
binary trie, as the tag field is either a 1 or a 0, depending on the node
type, and the locations of the left and right sons can be obtained with
simple arithmetic. If we ignore Larson's original structure as a "forest"
of tries, and reduce it to a single trie (rooted at 0th node), the index
depicted earlier (0 indicates a leaf node) would look something like this:

+---+---+---+---+---+---+---+ - - +---+---+ - -
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |     | 0 | 0 | 
+---+---+---+---+---+---+---+ - - +---+---+ - -
  0   1   2   3   4   5   6   . .  13  14

In this 0-based bit array form, given a node number, the locations for
its left-son and right-son may be calculated as 2*i + 1 and 2*i + 2.
Thus: (turn it 90 deg. clockwise to see the that this does depict our
original index)

0 -> 2 --> 6 ---> 14 (leaf)
   6 ---> 13 (leaf)

     2 --> 5 (leaf)
0 -> 1 --> 4 (leaf)
     1 --> 3 (leaf)

The next variation involves B, the binary sequence generator. Larson's
reason for using B is that usual key transformations (e.g. hashing) may
not be able to generate enough bit-randomization. Assuming that there
exists such a hash function, the bits of the transformed key may be used
directly to traverse the trie. When both of the above variations are
implemented, the traversal portion of the algorithm may look something
like the following: [Yes, that if-else construct within the while loop can
be simplified, but this code is just to illustrate the logic flow.]

hbits = H0(K) # hash
i = 0 # bitmap index (starting at root)
x = 0 # hash bit index

while (getbit(bitmap, i) == 1) { # non-leaf
if (getbit(hbits, x) == 0)

i = 2 * i + 1 # lson
else

i = 2 * i + 2 # rson
x++

}
# found a leaf node

One remaining issue is the bucket address associated with a leaf node.



Larson proposes that unused bits in the bitmap may be used to store the
bucket address.  A simpler scheme, appearently used by Un*x dbm/ndbm
(based on the public accounts of the algorithm) is simply to use the
indexed portion of the hash value as a page number. This may be
accomplished by using a table of masks (or by building a mask on-the-fly)
to mask-out the unused portion of the hash value.  After incorporating
this last variation into the above algoritm, we can write a function
"getpage" that takes one argument, the hash value for the key, and returns
a block number associated with that key. 

getpage(hbits) {
i = 0 # bitmap index (starting at root)
x = 0 # hash bit index

while (getbit(bitmap, i) == 1) { # non-leaf
if (getbit(hbits, x) == 0)

i = 2 * i + 1 # lson
else

i = 2 * i + 2 # rson
x++

}
curbit = i # found a leaf node
return hbits | (curmask = masks[x]) # block number

}

This is essentially the heart of our "dynamic hashing" implementation, as
it is required by all other routines. The other crucial portion, "bucket
splitting" is easy to construct: recall that Larson used the next
digit in the binary sequence (after skipping the indexed portion) for each
key to split the keys between two buckets. Given that we have saved the mask
(curmask above) that is used to extract the page number, we know
that the next bit that was masked-out is the bit to use for a split:

while (putpage(page, key, val) == 0) { # cannot insert ??
... obtain a new page # split time
foreach K in page

if (hash(K) & (curmask + 1)) 
movekey(newpage)

setbit(bitmap, curbit)
}

Note that we are only moving the keys with the next bit set into the new
page, and once that is done, the splitting node in the bitmap is set to 1,
indicating the split. Next time around, (say, during a lookup) one more bit
in the hash value will be examined, and if it is 0, the page address will
be the previously split page, else, it will be the new page.

Once the core algorithms are exposed, it is easy to build the rest of the
support functions and the appropriate wrappers into a complete hashed
database library (we assume key/value pairs are stored together on the
page):

#
# fetch the value of a given key. returns value
# or nullvalue
#



dbmfetch(key) {

page = getpage(hash(key))

if ((val = getpair(page, key)) != null)
return val

return nullval
}

#
# delete both the key and its value from the database
# returns 1 (success) or 0 (failure)
# 
dbmdelete(key) {

page = getpage(hash(key))

if (delpair(page, key) != null)
return 1

return 0
}

# 
# insert a key/value pair into the database
# returns 1 (success) or 0 (failure)
#
dbminsert(key, val) {

page = getpage(hash(key))

if (putpair(page, key, val) == 1)
return 1

else # split time
for (i = 0; i < maxsplit; i++) {

newp = getnewp(); # new page
foreach K in page

if (hash(K) & (curmask + 1)) {
delpair(page, K);
putpair(newp, K, val(K))

}

setbit(bitmap, curbit)

if (putpair(page, key, val) == 1)
return 1

# still did not fit. try some more
}

#
# if we are here, key did not fit after N splits.
#
return 0

}


